• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of the Viscoelastic Relaxation of a Stowed Telescope Starshade

Raghu, Rahul 01 January 2024 (has links) (PDF)
The Habitable Worlds Telescope Starshade is an occulting disk that orbits in tandem with a telescope that occludes and diffuses the light from stars to observe the relatively dim exoplanets in orbit around them. It achieves this in part with tailored petals that diffuse light to soften the light from the star. Due to the relative sizes of the star and the planet, NASA considers the shape stability of the Starshade's petals to be a Key Technology Gap. The Starshade is developed to be a deployable composite structure that folds on itself to fit within modern rockets. Due to the nature of satellite launches, Starshade will sit in the stowed configuration for multiple years, during which the viscoelastic material properties of the materials that consist of the Starshade will deform in the structure and take an unknown time to recover fully. Thus, the need arises to understand Starshade's viscoelastic behavior through recovery after fully deploying. Starshade's Petals consists of a sandwich composite structure where multiple composite edges are joined together using a significantly less stiff adhesive that is comparably thicker than the individual Carbon Fiber Reinforced Plastic layers that consist of the composite edge. This could cause traditional modeling approaches to not fully capture the potential modes of relaxation in the structure, so a diagnostic model, referred to as the Phoenix Edge, is developed to compare different modeling techniques. After modeling techniques are validated against each other, they are applied to the NI2 Petal to predict the viscoelastic structural response through 6 months of recovery after three years of stowage in a furled configuration.
2

Thin-Ply Laminate Viscoelasticity and Dimensional Stability in Deployable Space Structures

Yapa Hamillage, Milinda Madhusanka Yapa 01 January 2023 (has links) (PDF)
Thin-ply composite materials display remarkable versatility and hold great promise for applications in the space industry. They are characterized by exceptional attributes such as a high strength-to-weight ratio, fatigue resistance, and the ability to conform to high curvatures without failure. This study investigates the behavior of thin-ply composite materials and structures, with a particular emphasis on their relevance to deployable space applications. Deployable structures such as solar sails, are large structures that are designed to be compactly folded into small volumes to fit inside the spacecraft for the purpose of carrying them to space. These structures utilize the strain energy during folding, to facilitate the deployment sequence and attain the intended original configuration of the structure. However, the viscoelastic nature of the composite material leads to a reduction of strain energy over the storage period, leading to shape inaccuracies after deployment. Our research includes an in-depth analysis of the viscoelastic properties of the composite material and the behavior of structures following folding and subsequent deployment. The viscoelastic mechanical properties of the materials were assessed through a numerical multi-scale homogenization approach. We examined thin-ply laminates with varying orientations and ply arrangements and conducted experimental studies to validate the numerical models. We subsequently incorporated the viscoelastic properties of the laminates into the simulation of deployable structures. The laminate properties were evaluated both at the ply level and at the laminate level. Numerical simulations were conducted to study the behavior of a composite boom during folding, stowage, deployment, and subsequent shape recovery. Our research extended to characterizing the composite material based on available test data, as well as examining the stowage and recovery behavior of a structure constructed from unidirectional composites.
3

Vibration Modal Analysis of a Deployable Boom Integrated to a CubeSat / Modalanalys av en utfällbar bom på en kubisk satellit

Shepenkov, Valeriy January 2013 (has links)
CubeSat or Cubic Satellite is an effective method to study the space aroundthe Earth thanks to its low cost, easy maintenance and short lead time. However, a great challenge of small satellites lies in achieving technicaland scientific requirements during the design stage. In the present workprimary focus is given to dynamic characterization of the deployable tapespringboom in order to verify and study the boom deployment dynamiceffects on the satellite. The deployed boom dynamic characteristics werestudied through simulations and experimental testing. The gravity offloadingsystem was used to simulate weightlessness environment in theexperimental testing and simulations showed that the deployment of thesystem influence the results in a different way depending on the vibrationmode shape. / En CubeSat eller kubisk satellit är effektivt för att studera rymden runtjorden på grund av dess låga kostnad, enkla underhåll och korta ledtid. Enstor utmaningen i utformningen av små satelliter är att uppnå de tekniskaoch vetenskapliga kraven. Detta arbete har analyserat de dynamiska egenskapernahos en utfällbar band-fjäder bom i syfte att verifera och för attstudera bommens utfällningsdynamiska effekter på satellitens bana och attityd.Den utfällda bommens dynamiska egenskaper har studerats genomsimuleringar och experimentella tester. Ett tyngdkraftskompenserande systemhar använts för att simulera tyngdlöshet i de experimentella testernaoch simuleringar visar att utformningen av detta system påverkar resultatenolika beroende på svängingsmodens form.
4

Kinematic And Static Analysis Of Over-Constrained Mechanisms And Deployable Pantograph Masts

Nagaraj, B P 09 1900 (has links)
Foldable and deployable space structures refer to a broad category of pre-fabricated structures that can be transformed from a compact folded configuration to a predetermined expanded configuration. Such deployable structures are stable and can carry loads. These structures are also mechanisms with one degree of freedom in their entire transformation stages whether in the initial folded form or in the final expanded configuration. Usually, pantograph mechanisms or a scissor-like elements (SLEs) are part of such deployable structures. A new analysis tool to study kinematic and static analyses of foldable and deployable space structures /mechanisms, containing SLEs, has been developed in this thesis. The Cartesian coordinates are used to study the kinematics of large deployable structures. For many deployable structures the degree of freedom derived using the standard Grubler-Kutzback criteria, is found to be less than one even though the deployable structure /mechanism can clearly move. In this work the dimension of nullspace of the derivatives of the constraint equations are used to obtain the correct degrees of freedom of deployable structure. A numerical algorithm has been developed to identify the redundant joints /links in the deployable structure /mast which results in the incorrect degrees of freedom obtained by using the Grubler-Kutzback criteria. The effectiveness of the algorithm has been illustrated with several examples consisting of triangular, box shaped SLE mast and an eighteen-sided SLE ring with revolute joints. Further more the constraint Jacobian matrix is also used to evaluate the global degrees of freedom of deployable masts/structures. Closed-form kinematic solutions have been obtained for the triangular and box type masts and finally, as a generalization, extended to a general n-sided SLE based ring structure. The constraint Jacobian matrix based approach has also been extended to obtain the load carrying characteristics of deployable structures with SLEs in terms of deriving the stiffness matrix of the structure. The stiffness matrix has been obtained in the symbolic form and it matches results obtained from other commonly used techniques such as force and displacement methods. It is shown that the approach developed in this thesis is applicable for all types of practical masts with revolute joints where the revolute joint constraints are made to satisfy through the method of Lagrange multipliers and a penalty formulation. To demonstrate the effectiveness of the new method, the procedure is applied to solving (i) a simple hexagonal SLE mast, and (ii) a complex assembly of four hexagonal masts and the results are presented. In summary, a complete analysis tool to study masts with SLEs has been developed. It is shown that the new tool is effective in evaluating the redundant links /joints there by over coming the problems associated with the well –known Grubler-Kutzback criteria. Closed-form kinematic solutions of triangular and box SLE masts as well as a general n-sided SLE ring with revolute joints has been obtained. Finally, the constraint Jacobian based method is used to evaluate the stiffness matrix for the SLE masts. The theory and algorithms presented in this thesis can be extended to masts of different shapes and for the stacked masts.

Page generated in 0.0561 seconds