Spelling suggestions: "subject:"depth0(< K) cracking"" "subject:"depth0(< K) bracking""
1 |
Approximation Algorithms for Geometric Covering Problems for Disks and SquaresHu, Nan January 2013 (has links)
Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue Unit-Square Cover.
In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approximation scheme (PTAS) for it.
In Depth-(≤ K) Packing for Arbitrary-Size Disks/Squares, we are given a set of arbitrary-size disks/squares, and want to find a subset with depth at most K and maximizing the total area. We prove a depth reduction theorem and present a PTAS.
In Red-Blue Unit-Square Cover, we are given a red point set, a blue point set and a
set of unit squares, and want to find a subset of unit squares to cover all the blue points and the minimum number of red points. We prove that the problem is NP-hard, and give a PTAS for it. A "mod-one" trick we introduce can be applied to several other covering problems on unit squares.
|
2 |
Approximation Algorithms for Geometric Covering Problems for Disks and SquaresHu, Nan January 2013 (has links)
Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue Unit-Square Cover.
In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approximation scheme (PTAS) for it.
In Depth-(≤ K) Packing for Arbitrary-Size Disks/Squares, we are given a set of arbitrary-size disks/squares, and want to find a subset with depth at most K and maximizing the total area. We prove a depth reduction theorem and present a PTAS.
In Red-Blue Unit-Square Cover, we are given a red point set, a blue point set and a
set of unit squares, and want to find a subset of unit squares to cover all the blue points and the minimum number of red points. We prove that the problem is NP-hard, and give a PTAS for it. A "mod-one" trick we introduce can be applied to several other covering problems on unit squares.
|
Page generated in 0.0917 seconds