Spelling suggestions: "subject:"description logic"" "subject:"description yogic""
101 |
Approximation and Difference in Description LogicsBrandt, Sebastian, Küsters, Ralf, Turhan, Anni-Yasmin 24 May 2022 (has links)
Approximation is a new inference service in Description Logics first mentioned by Baader, Küsters, and Molitor. Approximating a concept, defined in one Description Logic, means to translate this concept to another concept, defined in a second typically less expressive Description Logic, such that both concepts are as closely related as possible with respect to subsumption. The present paper provides the first in-depth investigation of this inference task. We prove that approximations from the Description Logic ALC to ALE always exist and propose an algorithm computing them. As a measure for the accuracy of the approximation, we introduce a syntax-oriented difference operator, which yields a concept description that contains all aspects of the approximated concept that are not present in the approximation. It is also argued that a purely semantical difference operator, as introduced by Teege, is less suited for this purpose. Finally, for the logics under consideration, we propose an algorithm computing the difference.
|
102 |
Adding Numbers to the SHIQ Description Logic - First ResultsLutz, Carsten 24 May 2022 (has links)
Recently, the Description Logic (DL) SHIQ has found a large number of applications. This success is due to the fact that SHIQ combines a rich expressivity with efficient reasoning, as is demonstrated by its implementation in DL systems such as FaCT and RACER. One weakness of SHIQ, however, limits its usability in several application areas: numerical knowledge such as knowledge about the age, weight, or temperature of real-world entities cannot be adequately represented. In this paper, we propose an extension of SHIQ that aims at closing this gap. The new Description Logic Q-SHIQ, which augments SHIQ by additional, 'concrete domain' style concept constructors, allows to refer to rational numbers in concept descriptions, and also to define concepts based on the comparison of numbers via predicates such as < or =. We argue that this kind of expressivity is needed in many application areas such as reasoning about the semantic web. We prove reasoning with Q-SHIQ to be EXPTIME-complete (thus not harder than reasoning with SHIQ) by devising an automata-based decision procedure.
|
103 |
Terminological cycles in a description logic with existential restrictionsBaader, Franz 30 May 2022 (has links)
Cyclic definitions in description logics have until now been investigated only for description logics allowing for value restrictions. Even for the most basic language FL₀, which allows for conjunction and value restrictions only, deciding subsumption in the presence of terminological cycles is a PSPACE-complete problem. This report investigates subsumption in the presence of terminological cycles for the language EL, which allows for conjunction and existential restrictions. In contrast to the results for FL₀, subsumption in EL remains polynomial, independent of wether we use least fixpoint semantics, greatest fixpoint semantics, or descriptive semantics. These results are shown via a characterization of subsumption through the existence of certain simulation relations between nodes of the description graph associated with a given cyclic terminology. / This is an updated version of the original report, in which some errors in Section 3.1 of the original report have been corrected.
|
104 |
Keys, Nominals, and Concrete DomainsLutz, Carsten, Areces, Carlos, Horrocks, Ian, Sattler, Ulrike 30 May 2022 (has links)
Many description logics (DLs) combine knowledge representation on an abstract, logical level with an interface to 'concrete' domains such as numbers and strings with built-in predicates such as <, +, and prefix-of. These hybrid DLs have turned out to be quite useful for reasoning about conceptual models of information systems, and as the basis for expressive ontology languages. We propose to further extend such DLs with key constraints that allow the expression of statements like 'US citizens are uniquely identified by their social security number'. Based on this idea, we introduce a number of natural description logics and perform a detailed analysis of their decidability and computational complexity. It turns out that naive extensions with key constraints easily lead to undecidability, whereas more careful extensions yield NEXPTIME-complete DLs for a variety of useful concrete domains.
|
105 |
The Complexity of Finite Model Reasoning in Description LogicsLutz, Carsten, Sattler, Ulrike, Tendera, Lidia 30 May 2022 (has links)
We analyze the complexity of finite model reasoning in the description logic ALCQI, i.e. ALC augmented with qualifying number restrictions, inverse roles, and general TBoxes. It turns out that all relevant reasoning tasks such as concept satisfiability and ABox consistency are EXPTIME-complete, regardless of whether the numbers in number restrictions are coded unarily or binarily. Thus, finite model reasoning with ALCQI is not harder than standard reasoning with ALCQI.
|
106 |
Decidability of SHIQ with Complex Role Inclusion AxiomsHorrocks, Ian, Sattler, Ulrike 30 May 2022 (has links)
Motivated by medical terminology applications, we investigate the decidability of an expressive and prominent DL, SHIQ, extended with role inclusion axioms of the form RoS⊑T. It is well-known that a naive such extension leads to undecidability, and thus we restrict our attention to axioms of the form RoS⊑R or SoR⊑R, which is the most important form of axioms in the applications that motivated this extension. Surprisingly, this extension is still undecidable. However, it turns out that restricting our attention further to acyclic sets of such axioms, we regain decidability. We present a tableau-based decision procedure for this DL and report on its implementation, which behaves well in practise and provides important additional functionality in a medical terminology application.
|
107 |
Least common subsumers, most specific concepts, and role-value-maps in a description logic with existential restrictions and terminological cyclesBaader, Franz 30 May 2022 (has links)
In a previous report we have investigates subsumption in the presence of terminological cycles for the description logic EL, which allows conjunctions, existential restrictions, and the top concept, and have shown that the subsumption problem remains polynomial for all three types of semantics usually considered for cyclic definitions in description logics. This result depends on a characterization of subsumption through the existence of certain simulation relations on the graph associated with a terminology. In the present report we will use this characterization to show how the most specific concept and the least common subsumer can be computed in EL with cyclic definitions. In addition, we show that subsumption in EL (with or without cyclic definitions) remains polynomial even if one adds a certain restricted form of global role-value-maps to EL. In particular, this kind of role-value-maps can express transitivity of roles.
|
108 |
A Tableau Calculus for Temporal Description Logic: The Constant Domain Case.Lutz, Carsten, Sturm, Holger, Wolter, Frank, Zakharyaschev, Michael 24 May 2022 (has links)
We show how to combine the standard tableau system for the basic description logic ALC and Wolper´s tableau calculus for propositional temporal logic PTL (with the temporal operators ‘next-time’ and ‘until’) in order to design a terminating sound and complete tableau-based satisfiability-checking algorithm for the temporal description logic PTL ALC of [19] interpreted in models with constant domains. We use the method of quasimodels [17, 15] to represent models with infinite domains, and the technique of minimal types [11] to maintain these domains constant. The combination is flexible and can be extended to more expressive description logics or even do decidable fragments of first-order temporal logics.
|
109 |
Ontology-Mediated Probabilistic Model Checking: Extended VersionDubslaff, Clemens, Koopmann, Patrick, Turhan, Anni-Yasmin 20 June 2022 (has links)
Probabilistic model checking (PMC) is a well-established method for the quantitative analysis of dynamic systems. On the other hand, description logics (DLs) provide a well-suited formalism to describe and reason about static knowledge, used in many areas to specify domain knowledge in an ontology. We investigate how such knowledge can be integrated into the PMC process, introducing ontology-mediated PMC. Specifically, we propose a formalism that links ontologies to dynamic behaviors specified by guarded commands, the de-facto standard input formalism for PMC tools such as Prism. Further, we present and implement a technique for their analysis relying on existing DL-reasoning and PMC tools. This way, we enable the application of standard PMC techniques to analyze knowledge-intensive systems. Our approach is implemented and evaluated on a multi-server system case study, where different DL-ontologies are used to provide specifications of different server platforms and situations the system is executed in.
|
110 |
Role-Value Maps and General Concept Inclusions in the Description Logic FL₀Baader, Franz, Théron, Clément 20 June 2022 (has links)
We investigate the impact that general concept inclusions and role-value maps have on the complexity and decidability of reasoning in the Description Logic FL₀. On the one hand, we give a more direct proof for ExpTimehardness of subsumption w.r.t. general concept inclusions in FL₀. On the other hand, we determine restrictions on role-value maps that ensure decidability of subsumption, but we also show undecidability for the cases where these restrictions are not satisfied.
|
Page generated in 0.0538 seconds