• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A probabilistic-based design approach with game theoretical representations of the enterprise design process

Hernandez, Gabriel 08 1900 (has links)
No description available.
2

Platform design for customizable products and processes with non-uniform demand

Williams, Christopher Bryant 01 December 2003 (has links)
No description available.
3

Data collection plans and meta models for chemical process flowsheet simulators

Palmer, Kurt D. 08 1900 (has links)
No description available.
4

Platform design for customizable products as a problem of access in a geometric space

Hernandez, Gabriel 08 1900 (has links)
No description available.
5

A framework for simulation-based integrated design of multiscale products and design processes

Panchal, Jitesh H. 23 November 2005 (has links)
The complexity in multiscale systems design is significantly greater than in conventional systems because in addition to interactions between components, couplings between physical phenomena and scales are also important. This complexity amplifies two design challenges: a) complexity of coupled simulation models prohibits design space exploration, and b) unavailability of complete simulation models that capture all the interactions. Hence, the challenge in design of multiscale systems lies in managing this complexity and utilizing the available simulation models and information in an efficient manner to support effective decision-making. In order to address this challenge, our primary hypothesis is that the information and computational resources can be utilized in an efficient manner by designing design-processes (meta-design) along with the products. The primary hypothesis is embodied in this dissertation as a framework for integrated design of products and design processes. The framework consists of three components 1) a Robust Multiscale Design Exploration Method (RMS-DEM), 2) information-economics based metrics and methods for simplification of complex design processes and refinement of simulation models, and 3) an information modeling strategy for implementation of the theoretical framework into a computational environment. The framework is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the framework is carried out using various examples including: pressure vessel design, datacenter cooling system design, linear cellular alloy design, and multifunctional energetic structural materials design. The contributions from this dissertation are categorized in three research domains: a) multiscale design methodology, b) materials design, and c) computer-based support for collaborative, simulation-based multiscale design. In the domain of design methodology, new methods and metrics are developed for integrating the design of products and design processes. The methods and metrics are applied in the field of materials design to develop design-processes and specifications for Multifunctional Energetic Structural Materials. In the domain of computer-based support for design, an information modeling strategy is developed to provide computational support for meta-design. Although the framework is developed in the context of multiscale systems it is equally applicable to design of any other complex system.

Page generated in 0.1028 seconds