• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robotic Fabrication Workflows for Environmentally Driven Facades

Cabrera, Pablo Marcelo 25 July 2019 (has links)
Even though computer simulation of environmental factors and manufacturing technologies have experienced a fast development, architectural workflows that can take advantage of the possibilities created by these developments have been left behind and architectural design processes have not evolved at the same rate. This research presents design to fabrication workflows that explore data driven design to improve performance of facades, implementing for this purpose computational tools to handle environmental data complexity and proposes robotic fabrication technologies to facilitate façade components fabrication. During this research three design experiments were conducted that tested variations on the design to fabrication workflow, approaching the flow of information in top-down and bottom-up processes. Independent variables such as material, environmental conditions and structural behavior, are the framework in which workflow instances are generated based on dependent variables such as geometry, orientation and assembly logic. This research demonstrates the feasibility of a robotic based fabrication method informed by a multi-variable computational framework plus a simulation evaluator integrated into a design to fabrication workflow and put forward the discussion of a fully automated scenario. / Master of Science
2

Generating and Exploring Design Variations for Architectural and Urban Layouts

January 2014 (has links)
abstract: This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts. First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for a certain size. Second, I propose a method for a user to understand and systematically explore good building layouts. Starting from a discrete set of good layouts, I analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. I represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. Finally, I propose an algorithm to computationally design street networks that balance competing requirements such as quick travel time and reduced through traffic in residential neighborhoods. The user simply provides high-level functional specifications for a target neighborhood, while my algorithm best satisfies the specification by solving for both connectivity and geometric layout of the network. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2014
3

Acquiring symbolic design optimization problem reformulation knowledge: On computable relationships between design syntax and semantics

Sarkar, Somwrita January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis presents a computational method for the inductive inference of explicit and implicit semantic design knowledge from the symbolic-mathematical syntax of design formulations using an unsupervised pattern recognition and extraction approach. Existing research shows that AI / machine learning based design computation approaches either require high levels of knowledge engineering or large training databases to acquire problem reformulation knowledge. The method presented in this thesis addresses these methodological limitations. The thesis develops, tests, and evaluates ways in which the method may be employed for design problem reformulation. The method is based on the linear algebra based factorization method Singular Value Decomposition (SVD), dimensionality reduction and similarity measurement through unsupervised clustering. The method calculates linear approximations of the associative patterns of symbol cooccurrences in a design problem representation to infer induced coupling strengths between variables, constraints and system components. Unsupervised clustering of these approximations is used to identify useful reformulations. These two components of the method automate a range of reformulation tasks that have traditionally required different solution algorithms. Example reformulation tasks that it performs include selection of linked design variables, parameters and constraints, design decomposition, modularity and integrative systems analysis, heuristically aiding design “case” identification, topology modeling and layout planning. The relationship between the syntax of design representation and the encoded semantic meaning is an open design theory research question. Based on the results of the method, the thesis presents a set of theoretical postulates on computable relationships between design syntax and semantics. The postulates relate the performance of the method with empirical findings and theoretical insights provided by cognitive neuroscience and cognitive science on how the human mind engages in symbol processing and the resulting capacities inherent in symbolic representational systems to encode “meaning”. The performance of the method suggests that semantic “meaning” is a higher order, global phenomenon that lies distributed in the design representation in explicit and implicit ways. A one-to-one local mapping between a design symbol and its meaning, a largely prevalent approach adopted by many AI and learning algorithms, may not be sufficient to capture and represent this meaning. By changing the theoretical standpoint on how a “symbol” is defined in design representations, it was possible to use a simple set of mathematical ideas to perform unsupervised inductive inference of knowledge in a knowledge-lean and training-lean manner, for a knowledge domain that traditionally relies on “giving” the system complex design domain and task knowledge for performing the same set of tasks.
4

Acquiring symbolic design optimization problem reformulation knowledge: On computable relationships between design syntax and semantics

Sarkar, Somwrita January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis presents a computational method for the inductive inference of explicit and implicit semantic design knowledge from the symbolic-mathematical syntax of design formulations using an unsupervised pattern recognition and extraction approach. Existing research shows that AI / machine learning based design computation approaches either require high levels of knowledge engineering or large training databases to acquire problem reformulation knowledge. The method presented in this thesis addresses these methodological limitations. The thesis develops, tests, and evaluates ways in which the method may be employed for design problem reformulation. The method is based on the linear algebra based factorization method Singular Value Decomposition (SVD), dimensionality reduction and similarity measurement through unsupervised clustering. The method calculates linear approximations of the associative patterns of symbol cooccurrences in a design problem representation to infer induced coupling strengths between variables, constraints and system components. Unsupervised clustering of these approximations is used to identify useful reformulations. These two components of the method automate a range of reformulation tasks that have traditionally required different solution algorithms. Example reformulation tasks that it performs include selection of linked design variables, parameters and constraints, design decomposition, modularity and integrative systems analysis, heuristically aiding design “case” identification, topology modeling and layout planning. The relationship between the syntax of design representation and the encoded semantic meaning is an open design theory research question. Based on the results of the method, the thesis presents a set of theoretical postulates on computable relationships between design syntax and semantics. The postulates relate the performance of the method with empirical findings and theoretical insights provided by cognitive neuroscience and cognitive science on how the human mind engages in symbol processing and the resulting capacities inherent in symbolic representational systems to encode “meaning”. The performance of the method suggests that semantic “meaning” is a higher order, global phenomenon that lies distributed in the design representation in explicit and implicit ways. A one-to-one local mapping between a design symbol and its meaning, a largely prevalent approach adopted by many AI and learning algorithms, may not be sufficient to capture and represent this meaning. By changing the theoretical standpoint on how a “symbol” is defined in design representations, it was possible to use a simple set of mathematical ideas to perform unsupervised inductive inference of knowledge in a knowledge-lean and training-lean manner, for a knowledge domain that traditionally relies on “giving” the system complex design domain and task knowledge for performing the same set of tasks.

Page generated in 0.1204 seconds