• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cognitive Effects of Physical Models in Engineering Idea Generation

Cherickal Viswanathan, Vimal 1983- 14 March 2013 (has links)
Designers use various representations to externalize their ideas, physical models being an important one. Physical models are widely used by designers and their use is promoted as an effective design tool by industry and government agencies. However, very little is known about the cognitive effects of physical models in the design process; the available guidelines are conflicting. Some researchers argue for the frequent implementation of physical models, while others observe that the use of physical models fixates designers. In light of these conflicts, the research discussed in this dissertation focuses on understanding the cognitive effects of physical models and developing guidelines for aiding designers in their implementation. A combination of controlled lab studies and qualitative studies is adopted to achieve said goal. The results from the controlled studies show that physical models supplement designers’ erroneous mental models and help them to come up with more ideas satisfying the problem requirements. These studies also demonstrate that design fixation is not inherent in physical modeling, but it is caused by the Sunk Cost Effect. According to Sunk Cost Effect, as designers spend more time building physical models of their initial ideas, they tend to fixate more to the variations of those ideas. A qualitative study on industry-sponsored projects and development cases of award-winning products further supports these results in more realistic situations. Further, the studies reported in this dissertation show that physical models can be effective tools for the mitigation of fixation to undesirable design features in a flawed example; however, these results can also depend upon the experience level of a designer in solving open-ended design problems. With these insights from the series of studies, a set of guidelines and a Model Error Reeducation Method (MERM) are formulated and tested with novice designers. MERM helps designers in identifying critical loads and interface designs they miss in their original designs, before prototyping. The results from the testing of this method show that this method is very useful in avoiding said errors in physical modeling.
2

Effects of Representations in Engineering Idea Generation Process

Cherickal Viswanathan, Vimal Kumar 2010 December 1900 (has links)
In today’s competitive market, it is essential to be innovative and creative for an industry to sustain. Industry need to introduce new products to the market. Engineering idea generation plays a vital role in the development of new products. This research study is focused on the engineering idea generation. The representations of ideas have an important impact on the idea generation process. Design concepts may be represented in a variety of forms like sketches, physical models or computer based models. The goal of this research is to understand how these various representations affect design cognition. In this thesis, three studies showing the effects of two different representations in the idea generation process are presented. The first study focuses on the effects of physical models in engineers’ design cognition. This preliminary study investigates two different hypotheses: (1) Physical models supplement and improve designer’s mental models and (2) Physical models induce design fixation. The results show that physical models supplement the designer’s mental models but fail to enhance them. No evidence of design fixation is observed. The second and third studies investigate the effects of computer-based idea generation software on design cognition. The research questions investigated in this study are: (1) How does the use of this software tool assist design cognition? (2) How can the software interface be improved so that designers can generate ideas more easily? To answer these questions, a between-subjects idea generation experiment is conducted. In the experiment, the participants are asked to generate ideas to solve a design problem with and without the software. The results show that participants who generated ideas with the help of the software tool have less quantity of ideas compared to the control group. This may be due to the design fixation induced by the concepts presented. In the third study, the opinions of the participants for the improvements of the software interface are collected. Results show that participants do not have any preference of one way of clustering the concepts over the other. The results of this study also provide creative input for the future improvement of the software.
3

Methodological investigations into design inspiration and fixation experiments

Leite de Vasconcelos, Luis Arthur January 2017 (has links)
Designers often look for inspiration in their environment when exploring possible solutions to a given problem. However, many studies have reported that external stimuli may constrain designers’ imagination and limit their exploration to similar solutions, a phenomenon described as design fixation. Inspiration and fixation effects are traditionally studied with a similar experimental paradigm, which has produced a complex web of findings and explanations. Yet, when analysing the experiments and their findings closely, it becomes clear that there is considerable variation in how studies are conducted and the results they produce. Such variation makes it difficult to formulate a general view of how external stimuli affect the design process, and to translate the research findings into education and practice. Moreover, it raises questions about the reliability and effectiveness of the traditional experimental method. This thesis reports on a collection of studies that examine how design inspiration and fixation research is done and how it can be improved. It explores the research area by reviewing the literature and analysing data from a workshop; describes the research method by scrutinising experiments and their procedures; and explains the variation in research findings by testing experimental procedures empirically and suggesting new interpretations. My main findings are that: abstract stimuli can inspire or fixate designers to different degrees depending on how explicitly the stimuli are represented; external stimuli can inhibit the exploration of ideas that would otherwise be explored; the effect of experimental instructions varies depending on how encouraging the instructions are; and the way participants represent and elaborate ideas can moderate fixation results. Whilst this thesis offers insights into design practice and education, its main contribution is to design research, where it represents a fundamental material for those who are new to inspiration and fixation research, and for those who are already expert.
4

Property inference decision-making and decision switching of undergraduate engineers : implications for ideational diversity & fluency through movements in a Cartesian concept design space

Shah, Raza January 2017 (has links)
Design fixation is a phenomenon experienced by professional designers and engineering design students that stifles creativity and innovation through discouraging ideational productivity, fluency and diversity. During the design idea and concept generation phase of the design process, a reliance on perceptual surface feature similarities between design artefacts increases the likelihood of design fixation leading to design duplication. Psychologists, educators and designers have become increasingly interested in creative idea generation processes that encourage innovation and entrepreneurial outcomes. However, there is a notable lack of collaborative research between psychology, education and engineering design particularly on inductive reasoning of undergraduate engineering students in higher education. The data gathered and analysed for this study provides an insight into property inference decision-making preferences and decision switching (SWITCH) patterns of engineering undergraduates under similarity-based inductive judgements [SIM] and category-based inductive judgements [CAT]. For this psychology experiment, property induction tasks were devised using abstract shapes in a triad configuration. Participants (N = 180), on an undergraduate engineering programme in London, observed a triad of shapes with a target shape more similar-looking to one of two given shapes. Factors manipulated for this experiment included category alignment, category group, property type and target shape. Despite the cognitive development and maturation stage of undergraduate engineers (adults) in higher education, this study identified similarity-based inductive judgements [SIM] to play a significant role during inductive reasoning relative to the strength of category-based inductive judgements [CAT]. In addition to revealing the property inference decision-making preferences of a sample of undergraduate engineers (N = 180), two types of switch classification and two types of non-switch classification (SWITCH) were found and named SIM_NCC, SIM-Salient, Reverse_CAT and CAT_Switching. These different classifications for property inference switching and non-switching presented a more complex pattern of decision-making driven by the relative strength between similarity-based inductive judgements [SIM] and category-based inductive judgements [CAT]. The conditions that encouraged CAT_Switching is of particular interest to design because it corresponds to inference decision switching that affirms the sharing of properties between dissimilar-looking shapes designated as category members, i.e., in a conflicting category alignment condition (CoC). For CAT_Switching, this study found a significant interaction between a particular set of conditions that significantly increased the likelihood of property inference decisions switching to affirm the sharing of properties between dissimilar-looking shapes. Stimuli conditions that combined a conflicting category alignment condition (where dissimilar-looking shapes belong to the same category) with category specificity, a causal property and a target shape with merged (or blended) perceptual surface features significantly increased the likelihood of a property inference decision switching. CAT_Switching has important implications for greater ideational productivity, fluency and diversity to discourage design fixation within the conceptual design space. CAT_Switching conditions could encourage more creative design transformations with alternative design functions through inductive inferences that generalise between dissimilar artefact designs. The findings from this study led to proposing a Cartesian view of the concept design space to represent the possibilities for greater movements through flexible and expanding category boundaries to encourage conceptual combinations, greater ideational fluency and greater ideational diversity within a configuration design space. This study has also created a platform for further research into property inference decision-making, ideational diversity and category boundary flexibility under stimuli conditions that encourage designers and design students to make inductive generalisations between dissimilar domains of knowledge through a greater emphasis on causal relations and semantic networks.

Page generated in 0.0586 seconds