• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Projeto ótimo sob incertezas de amortecedores por atrito para controle de vibrações em edifícios submetidos à excitação sísmica

Ontiveros Pérez, Sergio Pastor January 2018 (has links)
Atualmente é bem conhecido que o uso de dispositivos passivos de dissipação de energia, tais como amortecedores por atrito, reduzem consideravelmente a resposta dinâmica de estruturas. Entretanto, os melhores parâmetros de cada amortecedor e também a melhor posição para instalá-los dentro da estrutura permanecem difíceis de serem estabelecidas. Assim, a otimização de amortecedores é uma área que vem sendo estudada de forma crescente nos últimos anos, tendo grande impacto no projeto ótimo de dispositivos para o controle de vibrações de estruturas, possibilitando obter soluções seguras e ao mesmo tempo econômicas. Contudo, apesar dos amortecedores de vibração por atrito possuírem algumas vantagens em relação a outros dispositivos passivos, poucos trabalhos são encontrados sobre a otimização de seus parâmetros ou sobre a sua melhor posição dentro de uma estrutura, devido à maior dificuldade de se calcular sistemas que envolvem atrito, por este ser não-linear. Entretanto, é interessante se levar em conta as incertezas presentes nas propriedades estruturais e/ou na excitação dinâmica no processo de otimização, o que leva a um problema de otimização sob incerteza, como otimização robusta e otimização baseada em confiabilidade. Assim, nesta Tese é proposta uma metodologia para a otimização simultânea dos parâmetros e das posições de amortecedores de vibração por atrito a serem instalados em edifícios submetidos à excitação sísmica levando em conta as incertezas presentes tanto nas propriedades estruturais quanto no carregamento sísmico, assim como nas forças de atrito dos amortecedores. A fim de ilustrar a metodologia, dois exemplos de aplicação são apresentados, sendo o primeiro sobre otimização robusta e o segundo sobre otimização baseada em confiabilidade. Os resultados mostraram, em ambos os exemplos, que o método proposto obteve sucesso, melhorando consideravelmente o comportamento dinâmico dos edifícios estudados, mesmo para um número limitado de dispositivos instalados. Portanto, acredita-se que a metodologia de otimização desenvolvida constitui uma ferramenta eficaz para o projeto ótimo de amortecedores por atrito. / Nowadays it is well known that the use of passive energy dissipation devices, such as friction dampers, considerably reduces the dynamic response of structures. However, the best parameters of each damper and also the best position to install them within the structure remain difficult to be determined. Thus, optimization of dampers is an area that has been increasingly studied in recent years, having a big impact in the optimal design of devices for the vibration control of structures, allowing to obtain safe and at the same time economic solutions. However, although friction dampers have some advantages over other passive devices, few contributions are found on optimization of their parameters or on their optimal position within a structure. This fact can be explained due to the greater difficulty in determining the response of systems involving friction, because their nonlinear behavior. In addition to the lack of studies on optimization of friction dampers, the few studies found in the literature consider the problem in a deterministic way. However, the uncertainties present in the structural properties and/or in the dynamic excitation can alter the optimal solution. Thus, it is important to take into account these uncertainties in the optimization process, which leads to an optimization problem under uncertainty, such as robust optimization and reliability-based optimization. Thus, in this Thesis, a methodology is proposed for the simultaneous optimization of parameters and positions of friction dampers to be installed in buildings subjected to seismic excitation taking into account uncertainties present in both the structural properties and the seismic load, as well as in the friction forces of the dampers. In order to illustrate the approach, two examples are presented, the first one on robust optimization and the second on reliabilitybased optimization. The results show, in both examples, that the proposed method considerably improves the dynamic behavior of the studied buildings, even for a limited number of installed devices. Therefore, it was shown that the proposed procedure is an effective tool for the optimum design of friction dampers.
2

Projeto ótimo sob incertezas de amortecedores por atrito para controle de vibrações em edifícios submetidos à excitação sísmica

Ontiveros Pérez, Sergio Pastor January 2018 (has links)
Atualmente é bem conhecido que o uso de dispositivos passivos de dissipação de energia, tais como amortecedores por atrito, reduzem consideravelmente a resposta dinâmica de estruturas. Entretanto, os melhores parâmetros de cada amortecedor e também a melhor posição para instalá-los dentro da estrutura permanecem difíceis de serem estabelecidas. Assim, a otimização de amortecedores é uma área que vem sendo estudada de forma crescente nos últimos anos, tendo grande impacto no projeto ótimo de dispositivos para o controle de vibrações de estruturas, possibilitando obter soluções seguras e ao mesmo tempo econômicas. Contudo, apesar dos amortecedores de vibração por atrito possuírem algumas vantagens em relação a outros dispositivos passivos, poucos trabalhos são encontrados sobre a otimização de seus parâmetros ou sobre a sua melhor posição dentro de uma estrutura, devido à maior dificuldade de se calcular sistemas que envolvem atrito, por este ser não-linear. Entretanto, é interessante se levar em conta as incertezas presentes nas propriedades estruturais e/ou na excitação dinâmica no processo de otimização, o que leva a um problema de otimização sob incerteza, como otimização robusta e otimização baseada em confiabilidade. Assim, nesta Tese é proposta uma metodologia para a otimização simultânea dos parâmetros e das posições de amortecedores de vibração por atrito a serem instalados em edifícios submetidos à excitação sísmica levando em conta as incertezas presentes tanto nas propriedades estruturais quanto no carregamento sísmico, assim como nas forças de atrito dos amortecedores. A fim de ilustrar a metodologia, dois exemplos de aplicação são apresentados, sendo o primeiro sobre otimização robusta e o segundo sobre otimização baseada em confiabilidade. Os resultados mostraram, em ambos os exemplos, que o método proposto obteve sucesso, melhorando consideravelmente o comportamento dinâmico dos edifícios estudados, mesmo para um número limitado de dispositivos instalados. Portanto, acredita-se que a metodologia de otimização desenvolvida constitui uma ferramenta eficaz para o projeto ótimo de amortecedores por atrito. / Nowadays it is well known that the use of passive energy dissipation devices, such as friction dampers, considerably reduces the dynamic response of structures. However, the best parameters of each damper and also the best position to install them within the structure remain difficult to be determined. Thus, optimization of dampers is an area that has been increasingly studied in recent years, having a big impact in the optimal design of devices for the vibration control of structures, allowing to obtain safe and at the same time economic solutions. However, although friction dampers have some advantages over other passive devices, few contributions are found on optimization of their parameters or on their optimal position within a structure. This fact can be explained due to the greater difficulty in determining the response of systems involving friction, because their nonlinear behavior. In addition to the lack of studies on optimization of friction dampers, the few studies found in the literature consider the problem in a deterministic way. However, the uncertainties present in the structural properties and/or in the dynamic excitation can alter the optimal solution. Thus, it is important to take into account these uncertainties in the optimization process, which leads to an optimization problem under uncertainty, such as robust optimization and reliability-based optimization. Thus, in this Thesis, a methodology is proposed for the simultaneous optimization of parameters and positions of friction dampers to be installed in buildings subjected to seismic excitation taking into account uncertainties present in both the structural properties and the seismic load, as well as in the friction forces of the dampers. In order to illustrate the approach, two examples are presented, the first one on robust optimization and the second on reliabilitybased optimization. The results show, in both examples, that the proposed method considerably improves the dynamic behavior of the studied buildings, even for a limited number of installed devices. Therefore, it was shown that the proposed procedure is an effective tool for the optimum design of friction dampers.
3

Projeto ótimo sob incertezas de amortecedores por atrito para controle de vibrações em edifícios submetidos à excitação sísmica

Ontiveros Pérez, Sergio Pastor January 2018 (has links)
Atualmente é bem conhecido que o uso de dispositivos passivos de dissipação de energia, tais como amortecedores por atrito, reduzem consideravelmente a resposta dinâmica de estruturas. Entretanto, os melhores parâmetros de cada amortecedor e também a melhor posição para instalá-los dentro da estrutura permanecem difíceis de serem estabelecidas. Assim, a otimização de amortecedores é uma área que vem sendo estudada de forma crescente nos últimos anos, tendo grande impacto no projeto ótimo de dispositivos para o controle de vibrações de estruturas, possibilitando obter soluções seguras e ao mesmo tempo econômicas. Contudo, apesar dos amortecedores de vibração por atrito possuírem algumas vantagens em relação a outros dispositivos passivos, poucos trabalhos são encontrados sobre a otimização de seus parâmetros ou sobre a sua melhor posição dentro de uma estrutura, devido à maior dificuldade de se calcular sistemas que envolvem atrito, por este ser não-linear. Entretanto, é interessante se levar em conta as incertezas presentes nas propriedades estruturais e/ou na excitação dinâmica no processo de otimização, o que leva a um problema de otimização sob incerteza, como otimização robusta e otimização baseada em confiabilidade. Assim, nesta Tese é proposta uma metodologia para a otimização simultânea dos parâmetros e das posições de amortecedores de vibração por atrito a serem instalados em edifícios submetidos à excitação sísmica levando em conta as incertezas presentes tanto nas propriedades estruturais quanto no carregamento sísmico, assim como nas forças de atrito dos amortecedores. A fim de ilustrar a metodologia, dois exemplos de aplicação são apresentados, sendo o primeiro sobre otimização robusta e o segundo sobre otimização baseada em confiabilidade. Os resultados mostraram, em ambos os exemplos, que o método proposto obteve sucesso, melhorando consideravelmente o comportamento dinâmico dos edifícios estudados, mesmo para um número limitado de dispositivos instalados. Portanto, acredita-se que a metodologia de otimização desenvolvida constitui uma ferramenta eficaz para o projeto ótimo de amortecedores por atrito. / Nowadays it is well known that the use of passive energy dissipation devices, such as friction dampers, considerably reduces the dynamic response of structures. However, the best parameters of each damper and also the best position to install them within the structure remain difficult to be determined. Thus, optimization of dampers is an area that has been increasingly studied in recent years, having a big impact in the optimal design of devices for the vibration control of structures, allowing to obtain safe and at the same time economic solutions. However, although friction dampers have some advantages over other passive devices, few contributions are found on optimization of their parameters or on their optimal position within a structure. This fact can be explained due to the greater difficulty in determining the response of systems involving friction, because their nonlinear behavior. In addition to the lack of studies on optimization of friction dampers, the few studies found in the literature consider the problem in a deterministic way. However, the uncertainties present in the structural properties and/or in the dynamic excitation can alter the optimal solution. Thus, it is important to take into account these uncertainties in the optimization process, which leads to an optimization problem under uncertainty, such as robust optimization and reliability-based optimization. Thus, in this Thesis, a methodology is proposed for the simultaneous optimization of parameters and positions of friction dampers to be installed in buildings subjected to seismic excitation taking into account uncertainties present in both the structural properties and the seismic load, as well as in the friction forces of the dampers. In order to illustrate the approach, two examples are presented, the first one on robust optimization and the second on reliabilitybased optimization. The results show, in both examples, that the proposed method considerably improves the dynamic behavior of the studied buildings, even for a limited number of installed devices. Therefore, it was shown that the proposed procedure is an effective tool for the optimum design of friction dampers.
4

Novel computational methods for stochastic design optimization of high-dimensional complex systems

Ren, Xuchun 01 January 2015 (has links)
The primary objective of this study is to develop new computational methods for robust design optimization (RDO) and reliability-based design optimization (RBDO) of high-dimensional, complex engineering systems. Four major research directions, all anchored in polynomial dimensional decomposition (PDD), have been defined to meet the objective. They involve: (1) development of new sensitivity analysis methods for RDO and RBDO; (2) development of novel optimization methods for solving RDO problems; (3) development of novel optimization methods for solving RBDO problems; and (4) development of a novel scheme and formulation to solve stochastic design optimization problems with both distributional and structural design parameters. The major achievements are as follows. Firstly, three new computational methods were developed for calculating design sensitivities of statistical moments and reliability of high-dimensional complex systems subject to random inputs. The first method represents a novel integration of PDD of a multivariate stochastic response function and score functions, leading to analytical expressions of design sensitivities of the first two moments. The second and third methods, relevant to probability distribution or reliability analysis, exploit two distinct combinations built on PDD: the PDD-SPA method, entailing the saddlepoint approximation (SPA) and score functions; and the PDD-MCS method, utilizing the embedded Monte Carlo simulation (MCS) of the PDD approximation and score functions. For all three methods developed, both the statistical moments or failure probabilities and their design sensitivities are both determined concurrently from a single stochastic analysis or simulation. Secondly, four new methods were developed for RDO of complex engineering systems. The methods involve PDD of a high-dimensional stochastic response for statistical moment analysis, a novel integration of PDD and score functions for calculating the second-moment sensitivities with respect to the design variables, and standard gradient-based optimization algorithms. The methods, depending on how statistical moment and sensitivity analyses are dovetailed with an optimization algorithm, encompass direct, single-step, sequential, and multi-point single-step design processes. Thirdly, two new methods were developed for RBDO of complex engineering systems. The methods involve an adaptive-sparse polynomial dimensional decomposition (AS-PDD) of a high-dimensional stochastic response for reliability analysis, a novel integration of AS-PDD and score functions for calculating the sensitivities of the failure probability with respect to design variables, and standard gradient-based optimization algorithms, resulting in a multi-point, single-step design process. The two methods, depending on how the failure probability and its design sensitivities are evaluated, exploit two distinct combinations built on AS-PDD: the AS-PDD-SPA method, entailing SPA and score functions; and the AS-PDD-MCS method, utilizing the embedded MCS of the AS-PDD approximation and score functions. In addition, a new method, named as the augmented PDD method, was developed for RDO and RBDO subject to mixed design variables, comprising both distributional and structural design variables. The method comprises a new augmented PDD of a high-dimensional stochastic response for statistical moment and reliability analyses; an integration of the augmented PDD, score functions, and finite-difference approximation for calculating the sensitivities of the first two moments and the failure probability with respect to distributional and structural design variables; and standard gradient-based optimization algorithms, leading to a multi-point, single-step design process. The innovative formulations of statistical moment and reliability analysis, design sensitivity analysis, and optimization algorithms have achieved not only highly accurate but also computationally efficient design solutions. Therefore, these new methods are capable of performing industrial-scale design optimization with numerous design variables.

Page generated in 0.0687 seconds