• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Linear Drying Diffusion and Viscoelastic Drying Shrinkage Modeling in Hardened Cement Pastes

Leung, Chin K. 2009 May 1900 (has links)
The present research seeks to study the decrease in diffusivity rate as relative humidity (RH) decreases and modeling drying shrinkage of hardened cement paste as a poroviscoelastic respose. Thin cement paste strips of 0.4 and 0.5 w/c at age 3 and 7 days were measured for mass loss and shrinkage at small RH steps in an environmental chamber at constant temperature. Non-linear drying diffusion rate of hardened cement was modeled with the use of Fick's second law of diffusion by assuming linearity of diffusion rate over short drops of ambient relative humidity. Techniques to determine drying isotherms prior to full equilibration of mass loss, as well as converting mass loss into concentration of water vapor were developed. Using the measured water vapor diffusivity, drying shrinkage strain was modeled by the theory of poroviscoelasticity. This approach was validated by determining viscoelastic properties from uniaxial creep tests considering the effect of aging by the solidification theory. A change in drying diffusion rate at different RH was observed in the 0.4 and 0.5 w/c pastes at different ages. Drying diffusion rate decreases as RH drops. This can be attributed to a change in diffusion mechanisms in the porous media at smaller pore radius. Shrinkage modeling with an average diffusion coefficient and with determined viscoelastic parameters from creep tests agreed well compared to the shrinkage data from experiments, indicating that drying shrinkage of cement paste may be considered as a poroviscoelastic reponse.

Page generated in 0.0646 seconds