• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desidratação por destilação azeotrópica da glicerina obtida como subproduto da produção do biodisel. / Dehydration by azeotropic distillation of glycerine obtained as byproduct of biodiesel production.

Gutiérrez Oppe, Evelyn Edith 18 March 2008 (has links)
O trabalho visa substituir processos comercialmente usados na indústria para purificação da glicerina obtida a partir de biodiesel. A purificação da glicerina até grau técnico ou P.A. (99,5 % em massa) implica em um grande consumo de energia nos processos de evaporação e destilação, pela necessidade de altos vácuos. Como alternativa, a desidratação da glicerina pode ser realizada por destilação azeotrópica heterogênea usando baixas temperaturas e a pressão atmosférica. O objetivo deste trabalho foi estudar a viabilidade técnica do processo de desidratação da glicerina por meio da destilação azeotrópica com tolueno e comparar o consumo de energia com os processos tradicionais. Para atingir o objetivo, avaliou-se a influencia das variáveis de processo: vazão de alimentação de glicerina (g/s) (X1 codificado), vazão de alimentação do vapor de tolueno (g/s) (X2 codificado), concentração inicial de glicerina (% em massa) (X3 codificado), temperatura de alimentação da glicerina (°C) (X4 codificado), na concentração final de glicerina. A construção do modelo foi feita a partir de um planejamento fatorial composto de segunda ordem, usando glicerina P.A. A concentração final foi estimada mediante o índice de refração e massa específica. Obteve-se o seguinte modelo: 2 1,96X2 13,18X3 6,42X1X3 2,24X2X3 1 %GLI = 79,42 8,88X1 + 4,72X + + + que mostrou que a temperatura de alimentação (X4 codificada) não exerceu influencia na concentração final de glicerina. Observou-se pelo modelo que é preferível utilizar valores máximos de X2.e mínimos de X1. Com estes ensaios foi possível obter uma glicerina 99% pura, porém apresentava um ligeiro cheiro de tolueno, que foi eliminado mediante arraste com ar (stripping). Para verificar o modelo empregou-se glicerina bruta oriunda do biodiesel previamente tratada. O processo prévio consistiu de: acidificação, neutralização, salting out com isopropanol, evaporação do álcool e troca iônica. A glicerina obtida após o processo de troca iônica, aparentemente só água e glicerina com 38,6 % em massa, foi usada para a verificação do modelo. Obteve-se por destilação azeotrópica uma glicerina com 92 % em massa, quando o valor predito pelo modelo foi 99 %. Esta glicerina tratada apresentou um desvio do modelo devido a presença de resíduos de sabões, porém ficou demonstrado a possibilidade de desidratação de glicerina por este processo necessitando apenas de melhorias nas etapas de purificação até a troca iônica. Também, avaliou-se a eficiência da coluna comparando a separação dada pela coluna com a dada por um único estágio de equilíbrio nas mesmas condições de vazão e concentração, concluindo-se que era da ordem de 10 %. Finalmente, este processo consome cerca de 57,72 % de energia em relação aos processos de evaporação e destilação a vácuo tradicionalmente usados. / This study aims to replace commercially processes used in industry for glycerine purification obtained from biodiesel. The purification of glycerine up to technical degree or PA (99.5% by weight) involves a large consumption of energy in the evaporation and distillation processes due to need operate at high vacuum. Alternatively, dehydration of glycerine can be achieved by heterogeneous azeotropic distillation using low temperature and atmospheric pressure. The objective of this work was to study the technical feasibility of the dehydration process of glycerine through azeotropic distillation with toluene and compare the energy consumption with traditional processes. To reach this objective, the influence of process variables: feed flow rate of glycerine (g/s) (X1 coded), feed flow rate of steam toluene (g/s) (X2 coded), initial concentration of glycerine (% by weight) (X3 coded), the temperature of food glycerine (°C) (X4 coded) has been studied in the final concentration of glycerine. The empirical model was built through fitting of data obtained from a factorial second order design, using glycerine PA. The final concentration was estimated by refractive index and density. The fitted model was: 2 1,96X2 13,18X3 6,42X1X3 2,24X2X3 1 %GLI = 79,42 8,88X1 + 4,72X + + + The model appoints that the feed (inlet glycerine solution) temperature (X4 coded) had no influence in the outlet concentration of glycerine. Moreover, it has been observed that is better to use maximum X2.and minimum X1. From these tests were possible to obtain a glycerine 99% purely, but it had a light smell of toluene, which was removed by stripping with air. In order to verify the empirical model, it has been used raw glycerine from biodiesel production. This glycerine was previously treated following the steps: acidification, neutralization, salting out with isopropanol, evaporation of isopropanol and ion exchange. The obtained glycerine after the process of ion exchange, presented 38.6% in weight, apparently only glycerine in water, has been used to check the model. Content of glycerine by this distillation was 92% in weight, when the predict value by the model was 99%. The deviation from the model was due to the presence of soap residues, but it has been demonstrated the possibility of dehydration of glycerine by this process requiring only some improvements in purification steps up to the ion exchange. In addition, it has been estimated the column efficiency by comparison of the separation in both column and single stage at the same flow rate and concentration conditions, concluding that it was 10 %. Finally, this process consumes approximately 57.72% of energy in relation to the processes of evaporation and vacuum distillation traditionally used.
2

Desidratação por destilação azeotrópica da glicerina obtida como subproduto da produção do biodisel. / Dehydration by azeotropic distillation of glycerine obtained as byproduct of biodiesel production.

Evelyn Edith Gutiérrez Oppe 18 March 2008 (has links)
O trabalho visa substituir processos comercialmente usados na indústria para purificação da glicerina obtida a partir de biodiesel. A purificação da glicerina até grau técnico ou P.A. (99,5 % em massa) implica em um grande consumo de energia nos processos de evaporação e destilação, pela necessidade de altos vácuos. Como alternativa, a desidratação da glicerina pode ser realizada por destilação azeotrópica heterogênea usando baixas temperaturas e a pressão atmosférica. O objetivo deste trabalho foi estudar a viabilidade técnica do processo de desidratação da glicerina por meio da destilação azeotrópica com tolueno e comparar o consumo de energia com os processos tradicionais. Para atingir o objetivo, avaliou-se a influencia das variáveis de processo: vazão de alimentação de glicerina (g/s) (X1 codificado), vazão de alimentação do vapor de tolueno (g/s) (X2 codificado), concentração inicial de glicerina (% em massa) (X3 codificado), temperatura de alimentação da glicerina (°C) (X4 codificado), na concentração final de glicerina. A construção do modelo foi feita a partir de um planejamento fatorial composto de segunda ordem, usando glicerina P.A. A concentração final foi estimada mediante o índice de refração e massa específica. Obteve-se o seguinte modelo: 2 1,96X2 13,18X3 6,42X1X3 2,24X2X3 1 %GLI = 79,42 8,88X1 + 4,72X + + + que mostrou que a temperatura de alimentação (X4 codificada) não exerceu influencia na concentração final de glicerina. Observou-se pelo modelo que é preferível utilizar valores máximos de X2.e mínimos de X1. Com estes ensaios foi possível obter uma glicerina 99% pura, porém apresentava um ligeiro cheiro de tolueno, que foi eliminado mediante arraste com ar (stripping). Para verificar o modelo empregou-se glicerina bruta oriunda do biodiesel previamente tratada. O processo prévio consistiu de: acidificação, neutralização, salting out com isopropanol, evaporação do álcool e troca iônica. A glicerina obtida após o processo de troca iônica, aparentemente só água e glicerina com 38,6 % em massa, foi usada para a verificação do modelo. Obteve-se por destilação azeotrópica uma glicerina com 92 % em massa, quando o valor predito pelo modelo foi 99 %. Esta glicerina tratada apresentou um desvio do modelo devido a presença de resíduos de sabões, porém ficou demonstrado a possibilidade de desidratação de glicerina por este processo necessitando apenas de melhorias nas etapas de purificação até a troca iônica. Também, avaliou-se a eficiência da coluna comparando a separação dada pela coluna com a dada por um único estágio de equilíbrio nas mesmas condições de vazão e concentração, concluindo-se que era da ordem de 10 %. Finalmente, este processo consome cerca de 57,72 % de energia em relação aos processos de evaporação e destilação a vácuo tradicionalmente usados. / This study aims to replace commercially processes used in industry for glycerine purification obtained from biodiesel. The purification of glycerine up to technical degree or PA (99.5% by weight) involves a large consumption of energy in the evaporation and distillation processes due to need operate at high vacuum. Alternatively, dehydration of glycerine can be achieved by heterogeneous azeotropic distillation using low temperature and atmospheric pressure. The objective of this work was to study the technical feasibility of the dehydration process of glycerine through azeotropic distillation with toluene and compare the energy consumption with traditional processes. To reach this objective, the influence of process variables: feed flow rate of glycerine (g/s) (X1 coded), feed flow rate of steam toluene (g/s) (X2 coded), initial concentration of glycerine (% by weight) (X3 coded), the temperature of food glycerine (°C) (X4 coded) has been studied in the final concentration of glycerine. The empirical model was built through fitting of data obtained from a factorial second order design, using glycerine PA. The final concentration was estimated by refractive index and density. The fitted model was: 2 1,96X2 13,18X3 6,42X1X3 2,24X2X3 1 %GLI = 79,42 8,88X1 + 4,72X + + + The model appoints that the feed (inlet glycerine solution) temperature (X4 coded) had no influence in the outlet concentration of glycerine. Moreover, it has been observed that is better to use maximum X2.and minimum X1. From these tests were possible to obtain a glycerine 99% purely, but it had a light smell of toluene, which was removed by stripping with air. In order to verify the empirical model, it has been used raw glycerine from biodiesel production. This glycerine was previously treated following the steps: acidification, neutralization, salting out with isopropanol, evaporation of isopropanol and ion exchange. The obtained glycerine after the process of ion exchange, presented 38.6% in weight, apparently only glycerine in water, has been used to check the model. Content of glycerine by this distillation was 92% in weight, when the predict value by the model was 99%. The deviation from the model was due to the presence of soap residues, but it has been demonstrated the possibility of dehydration of glycerine by this process requiring only some improvements in purification steps up to the ion exchange. In addition, it has been estimated the column efficiency by comparison of the separation in both column and single stage at the same flow rate and concentration conditions, concluding that it was 10 %. Finally, this process consumes approximately 57.72% of energy in relation to the processes of evaporation and vacuum distillation traditionally used.
3

Desenvolvimento de estratégia de desacoplamento no controle de coluna de destilação usando a técnica de separação de sinais. / Decoupling strategy development in the distillation column control using the signals separation technique.

CARMO, Shirlene Kelly Santos. 20 April 2018 (has links)
Submitted by Jesiel Ferreira Gomes (jesielgomes@ufcg.edu.br) on 2018-04-20T20:53:07Z No. of bitstreams: 1 SHIRLENE KELLY SANTOS CARMO – TESE (PPGEQ) 2015.pdf: 3441674 bytes, checksum: 2a66c0c04d01e56f10189d8b206ebc1c (MD5) / Made available in DSpace on 2018-04-20T20:53:07Z (GMT). No. of bitstreams: 1 SHIRLENE KELLY SANTOS CARMO – TESE (PPGEQ) 2015.pdf: 3441674 bytes, checksum: 2a66c0c04d01e56f10189d8b206ebc1c (MD5) Previous issue date: 2015-02-06 / Capes / Grande parte das indústrias apresenta complexidade no que diz respeito ao seu modo de operação. A fim de reduzir os problemas relacionados ao forte acoplamento existente nesses processos, a busca pela incorporação de dispositivos de inteligência artificial vem apresentando uma tendência crescente nos últimos anos. Devido à complexidade de operação e controle em processos multivariáveis, o diagnóstico e monitoramento de falhas nos processos tornaram-se cada vez mais difícil, com isso a aplicação destes dispositivos tem alcançado resultados satisfatórios em relação aos procedimentos executados com operadores humanos. A análise de componentes independentes (ICA) é uma técnica de separação de sinais que se baseia no uso de estatísticas de ordem superior para estimar cada uma das fontes desconhecidas por meio da observação de diversas misturas geradas a partir destas fontes. Embora sejam encontrados trabalhos recentes sobre a utilização do ICA em processos industriais, apenas dois trabalhos até o presente momento, foram aplicados em processos envolvendo colunas de destilação. O presente trabalho tem como objetivo propor uma estratégia de controle a uma coluna de destilação de alta pureza. A estratégia é baseada na técnica de separação de sinais ICA, tornando as malhas de controle desacopladas e facilitando assim o desempenho do controle. O desempenho do sistema de controle utilizando a técnica apresentou excelentes resultados em relação a uma estrutura convencional sem desacoplamento. As estruturas de controle foram implementadas em ambiente Aspen Plus DynamicsTM e Simulink/ Matlab®. O processo foi estruturado em ambiente Aspen Plus Dynamics™ e os controladores foram implementados no Simulink. / Much of the industry presents complexity with regard to its mode of operation. In order to reduce the problems related to existing strong engagement in these processes, the search for the incorporation of artificial intelligence devices has shown an increasing trend in recent years. Due to the complexity of operation and control in multivariate processes, the diagnosis and fault monitoring in the processes have become increasingly difficult, thus the application of these devices has achieved satisfactory results in relation to procedures performed with human operators. The independent component analysis (ICA) is a signal separation technique that is based on the use of higher order statistics to estimate each of the unknown source by observing various mixtures generated from these sources. Although found recent work on the use of the ICA in industrial processes, only two studies to date, have been applied in cases involving distillation columns. This paper aims to propose a control strategy to a high purity distillation column. The strategy is based on the ICA signal separation technique, making decoupled control loops, thus facilitating control performance. The performance of the control system using the technique showed excellent results compared to a conventional structure without decoupling. The control structures have been implemented in Aspen Plus Dynamics™ and Simulink / Matlab® environment. The process was structured environment Aspen Plus Dynamics™ and the controls were implemented in Simulink.

Page generated in 0.0539 seconds