Spelling suggestions: "subject:"detection anda signal processing"" "subject:"detection ando signal processing""
1 |
Topics in underwater detectionLourey, Simon J. Unknown Date (has links) (PDF)
This thesis presents methods for improving the detection processing of active sonar systems. Measures to compensate for or even exploit particular characteristics of the detection problem for these systems are considered. Reverberation is the result of scattering of the transmitted signal from non-target features. Multipath and variability are particularly pronounced for underwater sound signals because propagation is very sensitive to spatial and temporal temperature variations. Another problem is the low pulse repetition rate due to the relatively low speed of sound. This low data rate reduces tracking and detection performance. / Reverberation often arises as the sum of many small contributions so that received data has a multivariate Gaussian distribution. Estimating the large numbers of parameters in the distribution requires a lot of data. This data is not available because of the low data rate. Representing the scattering as an autoregressive process reduced the data requirement but at some cost to modelling accuracy. A coupled estimator algorithm is developed to estimate the parameters. Detection performance is compared to other models and estimators that assume Gaussian statistics. / To counter multipath distortion the delays and strength of the paths are estimated using a version of the expectation maximisation (EM) algorithm. The magnitude of path amplitudes is then used to decide if a target is present. The EM algorithm is also suggested as a way to find the likely amplitude of reverberation from a few large scatterers that that form non-Gaussian reverberation. / Non-parametric methods are considered for detection of short duration incoherent signals in a duct. These detectors compare the ranks of the data in a region being tested for target present to another region assumed to have no target. Simulations are used to explore performance and what happens when the independent samples assumption is violated by the presence of reverberation. / More data can improve detection. Exploiting data from multiple transmissions is difficult because the slow speed of sound allows targets to move out of detection cells between transmissions. Tracking the movements of potential targets can counter this problem. The usefulness of Integrated Probabalistic Data Association (IPDA), which calculates a probability of true track as well as track properties, is considered as a detection algorithm. Improvements when multiple receivers are used as well as limitations when sensor positions are uncertain are investigated.
|
2 |
Decomposição de sinais eletromiográficos de superfície misturados linearmente utilizando análise de componentes independentes / Decomposition of linearly mixed surface electromyographic signals using independent component analysisAlmeida, Tiago Paggi de 20 August 2018 (has links)
Orientador: Antônio Augusto Fasolo Quevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T12:21:10Z (GMT). No. of bitstreams: 1
Almeida_TiagoPaggide_M.pdf: 6663822 bytes, checksum: bdc5918b5983a84b46acf03bb9096cc7 (MD5)
Previous issue date: 2012 / Resumo: A eletromiografia e uma pratica clinica que permite inferir sobre a integridade do sistema neuromuscular, o que inclui a analise da unidade funcional contrátil do sistema neuromuscular, a unidade motora. O sinal eletromiografico e um sinal elétrico resultante do transiente iônico devido potenciais de ação de unidades motoras capturados por eletrodos invasivos ou não invasivos. Eletrodos invasivos capturam potenciais de ação de ate uma única unidade motora, porem o procedimento e demorado e incomodo. Eletrodos de superfície permitem detectar potenciais de ação de modo não invasivo, porem resultam na mistura de potenciais de ação de varias unidades motoras, resultando em um sinal com aparência de ruído aleatório, dificultando uma analise. Técnicas de Separação Cega de Fontes, como Analise de Componentes Independentes, tem se mostrado eficientes na decomposição de sinais eletromiograficos de superfície nos constituintes potenciais de ação de unidades motoras. Este projeto tem como objetivo desenvolver um protótipo capaz de capturar sinais mioeletricos de superfície e analisar a viabilidade da separação de sinais eletromiograficos intramusculares misturados linearmente, utilizando Analise de Componentes Independentes. O sistema proposto integra uma matriz de eletrodos com ate sete canais, um modulo de pré-processamento, um software para controle da captura dos sinais eletromiograficos de superfície e o algoritmo FastICA em ambiente MATLABR para separação dos sinais eletromiograficos. Os resultados mostram que o sistema foi capaz de capturar sinais eletromiograficos de superfície e os sinais eletromiograficos intramusculares misturados linearmente foram separados de forma confiável / Abstract: Electromyography is a clinical practice that provides information regarding the physiological condition of the neuromuscular system, which includes the analysis of the contractile functional unit of the neuromuscular system, known as motor unit. The electromyographic signal is an electrical signal resultant from ionic transient regarding motor unit action potentials captured by invasive or non-invasive electrodes. Invasive electrodes are able to detect action potentials of even one motor unit, although the procedure is time consuming and uncomfortable. Surface electrodes enable detecting action potential noninvasively, although the detected signal is a mixture of action potentials from several motor units within the detection area of the electrode, resulting in a complex interference pattern which is difficult to interpret. Blind Source Separation techniques, such as Independent Component Analysis, have proven effective for decomposing surface electromyographic signals into the constituent motor unit action potentials. The objective of this project was to develop a system in order to capture surface myoelectric signals and to analyze the viability for decomposing intramuscular myoelectric signals that were mixed linearly, using independent component analyzes. The system includes an electrode matrix with up to seven channels, a preprocessing module, a software for controlling surface myoelectric signals capture, and the FastICA algorithm in MATLABR for the intramuscular myoelectric signals decomposition. The results show that the system was able to capture surface myoelectric signals and was capable of decomposing the intramuscular myoelectric signals that were previously linearly mixed / Mestrado / Engenharia Biomedica / Mestre em Engenharia Elétrica
|
Page generated in 0.4052 seconds