• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L-estimators used in CFAR detection

McElwain, Thomas P. 08 1900 (has links)
No description available.
2

Analysis and design of a contact pressure distribution measuring system

Qi, Haiming January 1987 (has links)
No description available.
3

Analysis and design of a contact pressure distribution measuring system

Qi, Haiming January 1987 (has links)
No description available.
4

KMESS: an open source software package using a semi-empirical mesh-grid method for the modeling of germanium detector efficiencies / Open source software package using a semi-empirical mesh-grid method for the modeling of germanium detector efficiencies

Jackman, Kevin Richard 28 August 2008 (has links)
Traditional approaches in gamma-ray spectroscopy for determining the absolute full-energy peak efficiencies of germanium detectors are primarily either too time consuming or not economically viable. In addition, these approaches are difficult to use for arbitrary source shapes and counting geometries. An open source software package, KMESS (Kevin's Mesh Efficiency Simulator Software), was developed to address these problems. KMESS uses a new semi-empirical mesh-grid method to predict the absolute full-energy peak efficiencies of n- and p-type germanium detectors in both coaxial and closed-ended configurations. The model assumes that any gamma-ray source shape can be treated as a collection of point sources. The code was written in a modular form, making it easy to adapt for other detector configurations and materials. A suite of webbased graphical front-end tools was also developed to make the execution of KMESS user-friendly. KMESS can predict most full-energy peak efficiencies to within 10% accuracy for the energy range 100-1800 keV in less than 10 minutes. / text
5

Energy measurement capabilities of the LEDA cosmic ray detector

Murthy, Kavita January 1988 (has links)
No description available.
6

Energy measurement capabilities of the LEDA cosmic ray detector

Murthy, Kavita January 1988 (has links)
No description available.

Page generated in 0.0916 seconds