• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 961
  • 219
  • 123
  • 83
  • 25
  • 22
  • 16
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 2024
  • 328
  • 270
  • 206
  • 206
  • 192
  • 182
  • 158
  • 158
  • 129
  • 128
  • 120
  • 108
  • 104
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

The application of a linear photodiode array as a multichannel detector for inductively coupled plasma atomic emission spectroscopy /

McGeorge, Scott W. (Scott Wilson) January 1985 (has links)
A multichannel detection system based on a linear photodiode array (PDA) is described. The design and construction of the detection system and a rapid slew-scan computer-controlled stepping motor grating drive system is detailed. The theoretical performance of an optimized PDA system is contrasted with the performance of photomultiplier tubes. A technique is described which allows the dynamic range of the PDA to be extended by one order of magnitude towards higher light levels. A wavelength calibration procedure is outlined which results in a wavelength prediction accuracy of (+OR-)0.003 nm. A theory for high resolution spatial image positioning is presented and the ability to detect varying degrees of spectral overlap is evaluated. Applications of the PDA to the measurement and characterization of transient signals is described.
452

Improving the performance of a personnel monitor based on long range alpha detection

Swanberg, Erik Lars, Jr. 05 1900 (has links)
No description available.
453

Model-based design optimization of heterogeneous micro-reactors and chemical sensors

Phillips, Cynthia Michelle 08 1900 (has links)
No description available.
454

Fiber optic sensor for ultrasound

Beadle, Brad Michael 08 1900 (has links)
No description available.
455

Development of focal geometry with non-ideal samples

Prokopiou, D M 17 July 2015 (has links)
A novel geometry for powder X-ray diffraction (XRD), termed ‘focal construct geometry’ (FCG) is introduced and developed with both non-ideal samples and non-ideal sample conditions. FCG utilises an annular beam that has the unique feature of ‘focusing’ scattering maxima at single loci along a primary axis, hence offering diffraction data of enhanced intensity. This main advantage of FCG can be used within fields in need of rapid material identification, such as security screening in airports. A theoretical comparison between FCG and conventional transmission mode XRD showed that even though FCG suffers from broader diffraction peaks, an alternative approach to FCG data interpretation has the potential to provide narrower scattering maxima than conventional XRD. However, in order to employ this approach, discrimination between converging and diverging FCG scattering maxima is essential. Peak broadening was investigated by altering various aspects of FCG instrumentation components by either pencil beam XRD or FCG, indicating broad diffraction peaks independent of the beam geometry employed. Development of FCG resulted in the successful analysis of non-ideal samples, such as non-crystalline liquid samples, samples exhibiting preferred orientation and samples with large grain size, demonstrating advantages over conventional XRD. Furthermore, ideal samples (in terms of crystallinity, preferred orientation and grain size) were analysed by FCG under non-ideal conditions. This involved randomly orientating a single planar sample with respect to the primary axis, contrary to previous research that present FCG with a single planar sample normal to the primary axis. Sample rotation resulted in FCG scattering maxima with different xyz coordinates depending on the degree, axis and direction of rotation. Moreover, FCG analysis of multiple samples (normal to the primary axis) showed that as with all XRD arrangements, a priori knowledge of the samples’ position along the primary axis is required for effective data analysis. Investigation into the ability of FCG’s annular beam to act as a pre-sample coded aperture demonstrated an alternative method to interpret FCG images by recovering conventional XRD data. Additionally, two novel post-sample encoders (linear wire and Archimedean spiral) were considered. This enabled spatial discrimination of unknown samples along a primary axis and material identification for conventional XRD techniques. Combination of FCG with an absorbing edge post-sample encoder indicated discrimination between converging and diverging FCG scattering maxima. This ability can enable interpretation of single FCG images, as well as depth information of unknown samples within an inspection volume (e.g. airport luggage), hence enabling material identification. / © Cranfield University 2014
456

Novel radiation sensors based on bio/nanomaterials

Ahmadi, Morteza January 2013 (has links)
X-ray sensors are essential to many applications which are not limited to diagnostics and imaging technologies. Such sensors are extensively used in industry, medicine, research and space technology for applications such as safety, security, quality control, imaging and treatment. Depending on the effect of the radiation on the matter employed in the sensor, different types of X-ray sensors are fabricated. However, available techniques of X-ray detection have been under development due to specific shortcomings such as finite life time, low sensitivity, and post-processing requirements. This thesis is focused on design, fabrication and characterization of novel radiation sensors based on bio/nanomaterials. Bacteriorhodopsin (BR), a proton pump protein in the cell membrane of Halobacterium Salinarum, has been used to fabricate a sensor to measure dose and dose rate of X-ray beam in the kilovoltage and megavoltage energy range. The mass attenuation coefficients, effective atomic numbers and electron densities of BR and its comprising amino acids have been calculated for 1 keV-100 GeV photons to better understand the interaction of BR with X-ray photons. A theoretical formulation for calculating the change in the conductivity of nanoparticles under radiation is also provided. In particular, the dependence of radiation induced conductivity to irradiated particle size is given. In addition to that, an X-ray sensor based on thin film of bismuth sulfide has been fabricated using laser micromachining and chemical deposition techniques. This sensor has been characterized under a diagnostic X-ray machine with kilovoltage energy beam.
457

Construction and performance of the ATLAS SCT barrels and cosmic tests

Demirköz, Bilge Melahat January 2007 (has links)
ATLAS is a multi-purpose detector for the LHC and will detect proton-proton collisions with center of mass energy of 14 TeV. Part of the central inner detector, the Semi-Conductor Tracker (SCT) barrels, were assembled and tested at Oxford University and later integrated at CERN with the TRT (Transition Radiation Tracker) barrel. The barrel SCT is composed of 4 layers of silicon strip modules with two sensor layers with 80 micro m channel width. The design of the modules and the barrels has been optimized for low radiation length while maintaining mechanical stability, bringing services to the detector, and ensuring a cold and dry environment. The high granularity, high detector efficiency and low noise occupancy (< 5*10^-4) of the SCT will enable ATLAS to have an efficient pattern recognition capability. Due to the binary nature of the SCT read-out, a stable read-out system and the calibration system is of critical importance. SctRodDaq is the online software framework for the calibration and also the physics running of the SCT and has been developed and tested during construction and commissioning of the detector with cosmics. It reliably measures the SCT performance parameters for each of the 6.3*10^6 channels in the SCT, identifies defects and problematic modules and writes them to an offline database for access from Athena, the ATLAS offline software framework. This dataflow chain has been exercised during the cosmics run at CERN, where a 5*10^5 cosmics sample for the combined SCT and TRT detectors was collected with a scintillator based trigger. It is now being commissioned in the ATLAS pit.
458

Investigation of evaporated PbTe layers for application in infrared optics

Parris, Parmjit Kaur January 1995 (has links)
No description available.
459

Infra-red optical properties of SiGe/Si heterostructures

Corbin, Elizabeth Ann January 1995 (has links)
We present full-scale relativistic pseudopotential calculations of the first-order susceptibility in p-type SiGe/Si multiple quantum well structures with a view to exploring the suitability of such systems for infrared applications in the 3-5yrn and 8-15itm ranges. A derivation of an expression for the linear susceptibility, or absorption, is given and the frequency dependence of the linear response due to transitions between the valence minibands is determined. The microscopic origin of the absorption is demonstrated for both parallel and normal incident light. Comparisons between calculated and experimental results are presented and shown to be in good agreement. The effects of changing well width, temperature, doping concentration and germanium concentration in the well are considered. We also consider Auger recombination and discuss the possibility of engineering the miniband structure in order to prevent certain Auger processes occuring, Preliminary results from full scale Auger calculations are also presented.
460

Next generation of current sensors for aeronautics: preliminary designs

Babinet, Cyril 19 May 2008 (has links)
As a specialist in power distribution for the aerospace industry, Leach International-Europe intends to master both design and production of the current sensor - a strategic component - while offering a novel technology, free from important disadvantages of the previous generation. This report puts forward some research directions to replace the present generation, based on the Hall Effect and equipping most of commercial and military aircrafts. Relying on a feasibility study, and after reviewing the state of the art, this work heads quickly on exploiting Faraday's Law. The latter allows getting a voltage as an output directly from the magnetic field generated by the current flowing inside the conductor. The different solutions introduced here are based on analytical calculations (when it is possible), simulations and numerical calculations and are grounded on designing a sensor with an acceptable sensitivity.

Page generated in 0.0305 seconds