• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variedades determinantais e singularidades de matrizes / Determinantal varieties and singularities of matrices

Pereira, Miriam da Silva 29 April 2010 (has links)
O teorema de Hilbert-Burch fornece uma boa descrição de variedades determinantais de codi- mensão dois e de suas deformações em termos da matriz de representação. Neste trabalho, usamos esta correspondência para estudar propriedades de tais variedades usando métodos da teoria de singularidades. Na primeira parte da tese, estabelecemos a teoria de singularidades de matrizes n X p, generalizando os resultados obtidos por J. W. Bruce and F. Tari em [5], para ma- trizes quadradas, e por A. Frühbis-Krüger em [16], para matrizes n X (n+1). Na segunda parte, nos concentramos em variedades determinantais de codimensão 2, com singularidade isolada na origem. Para estas variedades, podemos mostrar a existência e a unicidade de suavizações, o que possibilita definir seu número de Milnor como o número de Betti na dimensão média de sua fibra genérica. Para superfícies em \'C POT. 4\', obtemos uma fórmula Lê-Greuel expressando o número de Milnor da superfície em termos da segunda multiplicidade polar e do número de Milnor de uma seção genérica / The theorem of Hilbert- Burch provides a good description of codimension two determinantal varieties and their deformations in terms of their presentation matrices. In this work we use this correspondence to study properties of determinantal varieties, based on methods of singularity theory of their presentation matrices. In the first part of the thesis we establish the theory of singularities for n X p matrices extending previous results of J. W. Bruce and F. Tari in [5], for classes of square matrices, and A. Frühbis-Krüger for n X (n+1) matrices in [16]. In the second part we concentrate on codimension two determinantal varieties with isolated singularities. These singularities admit a unique smoothing, thus we can define their Milnor number as the middle Betti number of their generic fiber. For surfaces in \'C POT. 4\' , we obtain a Lê-Greuel formula expressing the Milnor number of the surface in terms of the second polar multiplicity and the Milnor number of the generic section
2

Variedades determinantais e singularidades de matrizes / Determinantal varieties and singularities of matrices

Miriam da Silva Pereira 29 April 2010 (has links)
O teorema de Hilbert-Burch fornece uma boa descrição de variedades determinantais de codi- mensão dois e de suas deformações em termos da matriz de representação. Neste trabalho, usamos esta correspondência para estudar propriedades de tais variedades usando métodos da teoria de singularidades. Na primeira parte da tese, estabelecemos a teoria de singularidades de matrizes n X p, generalizando os resultados obtidos por J. W. Bruce and F. Tari em [5], para ma- trizes quadradas, e por A. Frühbis-Krüger em [16], para matrizes n X (n+1). Na segunda parte, nos concentramos em variedades determinantais de codimensão 2, com singularidade isolada na origem. Para estas variedades, podemos mostrar a existência e a unicidade de suavizações, o que possibilita definir seu número de Milnor como o número de Betti na dimensão média de sua fibra genérica. Para superfícies em \'C POT. 4\', obtemos uma fórmula Lê-Greuel expressando o número de Milnor da superfície em termos da segunda multiplicidade polar e do número de Milnor de uma seção genérica / The theorem of Hilbert- Burch provides a good description of codimension two determinantal varieties and their deformations in terms of their presentation matrices. In this work we use this correspondence to study properties of determinantal varieties, based on methods of singularity theory of their presentation matrices. In the first part of the thesis we establish the theory of singularities for n X p matrices extending previous results of J. W. Bruce and F. Tari in [5], for classes of square matrices, and A. Frühbis-Krüger for n X (n+1) matrices in [16]. In the second part we concentrate on codimension two determinantal varieties with isolated singularities. These singularities admit a unique smoothing, thus we can define their Milnor number as the middle Betti number of their generic fiber. For surfaces in \'C POT. 4\' , we obtain a Lê-Greuel formula expressing the Milnor number of the surface in terms of the second polar multiplicity and the Milnor number of the generic section
3

Bi-Lipschitz invariant geometry / Geometria Bi-Lipschitz invariante

Silva, Thiago Filipe da 18 January 2018 (has links)
The study about bi-Lipschitz equisingularity has been a very important subject in Singularity Theory in last decades. Many different approach have cooperated for a better understanding about. One can see that the bi-Lipschitz geometry is able to detect large local changes in curvature more accurately than other kinds of equisingularity. The aim of this thesis is to investigate the bi-Lipschitz geometry in an algebraic viewpoint. We define some algebraic tools developing classical properties. From these tools, we obtain algebraic criterions for the bi-Lipschitz equisingularity of some families of analytic varieties. We present a categorical and homological viewpoints of these algebraic structure developed before. Finally, we approach algebraically the bi-Lipschitz equisingularity of a family of Essentially Isolated Determinantal Singularities. / O estudo da equisingularidade bi-Lipschitz tem sido amplamente investigado nas últimas décadas. Diversas abordagens têm contribuído para uma melhor compreensão a respeito. Observa-se que a geometria bi-Lipschitz é capaz de detectar grandes alterações locais de curvatura com maior precisão quando comparada a outros padrões de equisingularidade. O objetivo desta tese é investigar a geometria bi-Lipschitz do ponto de vista algébrico. Definimos algumas estruturas algébricas desenvolvendo algumas propriedades clássicas. A partir de tais estruturas obtemos critérios algébricos para a equisingularidade bi-Lipschitz de algumas classes de famílias de variedades analíticas. Apresentamos uma visão categórica e homológica dos elementos desenvol- vidos. Finalmente abordamos algebricamente a equisingularidade de famílias de Singularidades Determinantais Essencialmente Isoladas.
4

Bi-Lipschitz invariant geometry / Geometria Bi-Lipschitz invariante

Thiago Filipe da Silva 18 January 2018 (has links)
The study about bi-Lipschitz equisingularity has been a very important subject in Singularity Theory in last decades. Many different approach have cooperated for a better understanding about. One can see that the bi-Lipschitz geometry is able to detect large local changes in curvature more accurately than other kinds of equisingularity. The aim of this thesis is to investigate the bi-Lipschitz geometry in an algebraic viewpoint. We define some algebraic tools developing classical properties. From these tools, we obtain algebraic criterions for the bi-Lipschitz equisingularity of some families of analytic varieties. We present a categorical and homological viewpoints of these algebraic structure developed before. Finally, we approach algebraically the bi-Lipschitz equisingularity of a family of Essentially Isolated Determinantal Singularities. / O estudo da equisingularidade bi-Lipschitz tem sido amplamente investigado nas últimas décadas. Diversas abordagens têm contribuído para uma melhor compreensão a respeito. Observa-se que a geometria bi-Lipschitz é capaz de detectar grandes alterações locais de curvatura com maior precisão quando comparada a outros padrões de equisingularidade. O objetivo desta tese é investigar a geometria bi-Lipschitz do ponto de vista algébrico. Definimos algumas estruturas algébricas desenvolvendo algumas propriedades clássicas. A partir de tais estruturas obtemos critérios algébricos para a equisingularidade bi-Lipschitz de algumas classes de famílias de variedades analíticas. Apresentamos uma visão categórica e homológica dos elementos desenvol- vidos. Finalmente abordamos algebricamente a equisingularidade de famílias de Singularidades Determinantais Essencialmente Isoladas.
5

Exact algorithms for determinantal varieties and semidefinite programming / Algorithmes exacts pour les variétés déterminantielles et la programmation semi-définie

Naldi, Simone 24 September 2015 (has links)
Dans cette thèse, nous nous intéressons à l'étude des structures déterminantielles apparaissent dans l'optimisation semi-définie (SDP), le prolongement naturel de la programmation linéaire au cône des matrices symétrique semi-définie positives. Si l'approximation d'une solution d'un programme semi-défini peut être calculé efficacement à l'aide des algorithmes de points intérieurs, ni des algorithmes exacts efficaces pour la SDP sont disponibles, ni une compréhension complète de sa complexité théorique a été atteinte. Afin de contribuer à cette question centrale en optimisation convexe, nous concevons un algorithme exact pour décider la faisabilité d'une inégalité matricielle linéaire (LMI) $A(x)\succeq 0$. Quand le spectraèdre associé (le lieu $\spec$ des $x \in \RR^n$ ou $A(x)\succeq 0$) n'est pas vide, la sortie de cet algorithme est une représentation algébrique d'un ensemble fini qui contient au moins un point $x \in \spec$: dans ce cas, le point $x$ minimise le rang de $A(x)$ sur $\spec$. La complexité est essentiellement quadratique en le degré de la représentation en sortie, qui coïncide, expérimentalement, avec le degré algébrique de l'optimisation semi-définie. C'est un garantie d'optimalité de cette approche dans le contexte des algorithmes exacts pour les LMI et la SDP. Remarquablement, l'algorithme ne suppose pas la présence d'un point intérieur dans $\spec$, et il profite de l'existence de solutions de rang faible de l'LMI $A(x)\succeq 0$. Afin d'atteindre cet objectif principal, nous développons une approche systématique pour les variétés déterminantielles associées aux matrices linéaires. Nous prouvons que décider la faisabilité d'une LMI $A(x)\succeq 0$ se réduit à calculer des points témoins dans les variétés déterminantielles définies sur $A(x)$. Nous résolvons ce problème en concevant un algorithme exact pour calculer au moins un point dans chaque composante connexe réelle du lieu des chutes de rang de $A(x)$. Cet algorithme prend aussi avantage des structures supplémentaires, et sa complexité améliore l'état de l'art en géométrie algébrique réelle. Enfin, les algorithmes développés dans cette thèse sont implantés dans une nouvelle bibliothèque Maple appelé Spectra, et les résultats des expériences mettant en évidence la meilleure complexité sont fournis. / In this thesis we focus on the study of determinantal structures arising in semidefinite programming (SDP), the natural extension of linear programming to the cone of symetric positive semidefinite matrices. While the approximation of a solution of a semidefinite program can be computed efficiently by interior-point algorithms, neither efficient exact algorithms for SDP are available, nor a complete understanding of its theoretical complexity has been achieved. In order to contribute to this central question in convex optimization, we design an exact algorithm for deciding the feasibility of a linear matrix inequality (LMI) $A(x) \succeq 0$. When the spectrahedron $\spec = \{x \in \RR^n \mymid A(x) \succeq 0\}$ is not empty, the output of this algorithm is an algebraic representation of a finite set meeting $\spec$ in at least one point $x^*$: in this case, the point $x^*$ minimizes the rank of the pencil on the spectrahedron. The complexity is essentially quadratic in the degree of the output representation, which meets, experimentally, the algebraic degree of semidefinite programs associated to $A(x)$. This is a guarantee of optimality of this approach in the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not assume the presence of an interior point in the spectrahedron, and it takes advantage of the existence of low rank solutions of the LMI. In order to reach this main goal, we develop a systematic approach to determinantal varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of a LMI can be performed by computing a sample set of real solutions of determinantal polynomial systems. We solve this problem by designing an exact algorithm for computing at least one point in each real connected component of the locus of rank defects of a pencil $A(x)$. This algorithm admits as input generic linear matrices but takes also advantage of additional structures, and its complexity improves the state of the art in computational real algebraic geometry. Finally, the algorithms developed in this thesis are implemented in a new Maple library called {Spectra}, and results of experiments highlighting the complexity gain are provided.

Page generated in 0.1443 seconds