• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Validation of a Next Generation Sequencing based method for chimerism analysis in clinical practice

Högberg, Maria January 2022 (has links)
Hematopoietic stem cell transplantation (HSCT) is used to treat patient with hematological diseases such as leukemia and genetic conditions such as sickle cell anemia. After HSCT the patients are supervised for signs of relapse of disease or rejection of transplanted cells. This is done by using chimerism analysis. At the department of clinical genetics at Akademiska sjukhuset fragment analysis of short tandem repeats is used for chimerism analysis, which is to be replaced by a Next generation sequencing (NGS) based method called Devyser chimerism, which includes an IVDR labelled kit. The aim of this project was to validate the new method for chimerism analysis. DNA samples from twelve HSCT patients and their donors were analyzed with Devyser chimerism and the results were compared to the results from the current method. The sensitivity of the new method was tested by analysis of artificial chimerism samples from blood donors. The results from the comparison showed a good correlation between methods (R2 = 0,9864) and the sensitivity of the method was confirmed to be 0,1% mixed chimerism. There was some difficulty in identifying enough informative markers for re-transplanted patients two had separate donors. This is a known problem for chimerism analysis in general and not a specific problem to the new method and will not be a hindrance for the implementation of Devyser chimerism at the clinical laboratory.

Page generated in 0.0393 seconds