• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Strategies for Stereoselective Preparation of Densely Functionalized Cyclobutanes:

Yang, Xinyu January 2022 (has links)
Thesis advisor: Shih-Yuan Liu / This dissertation describes the utility of 1,2-azaborine motif as a 4C+1B+1N synthon in organic synthesis, especially for the preparation of densely functionalized cyclobutanes based on the framework of the 1,2-azaborine photoisomerization. The substitution of a CC unit with a BN unit in benzenes significantly modifies the properties of classic benzenoid compounds, leading to new reactivities and functionalities. In this vein, Chapter 1 discloses photoisomerization of 1,2-azaborines to selectively form BN-analogues of the Dewar benzene. Three applications of the Dewar photoisomers are described herein: 1) a rhodium-catalyzed ring-opening reaction to form 1,2-azaborines; 2) furnishing cis aminoborylated cyclobutanes with the boron unit as a further functionalization handle; 3) a stereospecific ring-opening reaction to afford diene which can engage in Diels-Alder reaction. Chapter 2 elaborates on a modular and stereoselective strategy to access a variety of cyclobutane β-amino alcohols. Discussed herein are regioselective functionalizations and di-functionalizations of the 1,2-azaborine core and a tandem photoisomerization-hydrogenation-oxidation protocol to translate the functionalized azaborine core to cyclobutane amino alcohols. Also examined herein are the scope of azaborine photoisomerization and Dewar hydrogenation. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.0374 seconds