• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Click Chemistry Approach to Analyze Curcumin-Protein Interactions in vitro and in vivo

Zhou, Jingyi 20 August 2019 (has links)
Over the past decades, numerous studies shown curcumin, a dietary compound derived from turmeric, has a variety of health-promoting actions, such as anti-oxidant, anti-microbial, anti-inflammatory, and anti-cancer effects, making curcumin the most promising dietary compound for disease prevention. However, the underlying mechanisms by which curcumin has these health-promoting effects are not well understood. A better understanding of the molecular mechanism of curcumin could help to develop novel strategies to reduce the risks of some human diseases. Protein thiols play important roles in cell signaling, and recent studies showed that curcumin could covalently react with protein thiols, supporting that curcumin-protein interactions could contribute to the health-promoting effects of curcumin. However, the curcumin-protein interactions are under-studied. Notably, it remains unknown whether oral intake of curcumin could covalently interact with protein in vivo. In this project, we synthesized a click chemistry probe of curcumin (Di-Cur), and used this probe to characterize curcumin-protein interactions both in vitro and in vivo using a click chemistry-based imaging approach. Our results demonstrate that orally administrated curcumin could form curcumin-protein adducts in specific tissues of the mice, which may contribute to the potent biological effects and poor pharmacokinetics of curcumin.

Page generated in 0.0218 seconds