1 |
Pathogénicité des Escherichia coli entérohémorragiques : identification de voies de régulation contrôlant la mobilité, la formation de biofilm et le locus d'effacement des entérocytesBranchu, Priscilla 10 December 2012 (has links) (PDF)
Les Escherichia coli entérohémorragiques (EHEC) sont responsables de toxi-infections alimentaires conduisant à des colites hémorragiques pouvant se compliquer d'un syndrome hémolytique et urémique. Une fois arrivés dans l'intestin, les EHEC adhèrent aux cellules épithéliales en causant des lésions d'attachement-effacement. Le système de sécrétion de type III et les protéines effectrices requis pour ce phénotype sont codés majoritairement par le locus d'effacement des entérocytes (LEE), constitué de plusieurs opérons (LEE1-5). Notre étude a permis de clarifier une des cascades de régulation contrôlant l'expression du LEE. Par des analyses en qRT-PCR et des immuno précipitations de la chromatine, nous avons déterminé que les régulateurs GadE et GadX sont des répresseurs indirects de l'expression du LEE. GadE active l'expression de gadX, et GadX réprime l'expression de ler, codant pour le principal activateur des opérons LEE2-5. De plus, GadE réprime aussi l'expression des opérons LEE4 et LEE5 indépendamment de Ler. En retour, Ler réprime l'expression de gadE et de gadX. Le monoxyde d'azote (NO) est un effecteur majeur de la réponse immune innée, produit en particulier par les cellules épithéliales intestinales. Il avait été montré que le NO réprime l'expression du LEE et active celle de gadE et de gadX. Notre étude a permis d'identifier le régulateur clé responsable de ces régulations, NsrR. NsrR réprime indirectement l'expression de gadE et gadX et active l'expression des opérons LEE1, LEE4 et LEE5 en se fixant sur leurs promoteurs respectifs. En présence de NO, NsrR devient inactif. Ainsi, le NO réprime directement l'expression du LEE en supprimant la fixation de NsrR aux promoteurs du LEE1, LEE4 et LEE5, et indirectement en activant l'expression de gadE et donc de gadX. Un modèle de régulation intégrant l'ensemble de ces résultats est proposé. D'autre part, nous avons identifié et caractérisé une nouvelle phosphodiestérase spécifique des EHEC les plus pathogènes, VmpA. Par son activité d'hydrolyse du di-GMPc, VmpA contrôle la mobilité bactérienne, la formation de biofilm, et probablement l'expression du LEE, mais aurait aussi un rôle plus général dans la physiologie des EHEC.
|
2 |
Pathogénicité des Escherichia coli entérohémorragiques : identification de voies de régulation contrôlant la mobilité, la formation de biofilm et le locus d'effacement des entérocytes / Pathogenicity of enterohemorrhagic E. coli : identification of regulatory pathways controlling motility, biofilm formation and the locus of enterocyte effacementBranchu, Priscilla 10 December 2012 (has links)
Les Escherichia coli entérohémorragiques (EHEC) sont responsables de toxi-infections alimentaires conduisant à des colites hémorragiques pouvant se compliquer d’un syndrome hémolytique et urémique. Une fois arrivés dans l’intestin, les EHEC adhèrent aux cellules épithéliales en causant des lésions d’attachement-effacement. Le système de sécrétion de type III et les protéines effectrices requis pour ce phénotype sont codés majoritairement par le locus d’effacement des entérocytes (LEE), constitué de plusieurs opérons (LEE1-5). Notre étude a permis de clarifier une des cascades de régulation contrôlant l’expression du LEE. Par des analyses en qRT-PCR et des immuno précipitations de la chromatine, nous avons déterminé que les régulateurs GadE et GadX sont des répresseurs indirects de l’expression du LEE. GadE active l’expression de gadX, et GadX réprime l’expression de ler, codant pour le principal activateur des opérons LEE2-5. De plus, GadE réprime aussi l’expression des opérons LEE4 et LEE5 indépendamment de Ler. En retour, Ler réprime l’expression de gadE et de gadX. Le monoxyde d’azote (NO) est un effecteur majeur de la réponse immune innée, produit en particulier par les cellules épithéliales intestinales. Il avait été montré que le NO réprime l’expression du LEE et active celle de gadE et de gadX. Notre étude a permis d’identifier le régulateur clé responsable de ces régulations, NsrR. NsrR réprime indirectement l’expression de gadE et gadX et active l’expression des opérons LEE1, LEE4 et LEE5 en se fixant sur leurs promoteurs respectifs. En présence de NO, NsrR devient inactif. Ainsi, le NO réprime directement l’expression du LEE en supprimant la fixation de NsrR aux promoteurs du LEE1, LEE4 et LEE5, et indirectement en activant l’expression de gadE et donc de gadX. Un modèle de régulation intégrant l’ensemble de ces résultats est proposé. D’autre part, nous avons identifié et caractérisé une nouvelle phosphodiestérase spécifique des EHEC les plus pathogènes, VmpA. Par son activité d’hydrolyse du di-GMPc, VmpA contrôle la mobilité bactérienne, la formation de biofilm, et probablement l’expression du LEE, mais aurait aussi un rôle plus général dans la physiologie des EHEC. / Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen causing hemorrhagic colitis and Hemolytic and Uremic Syndrome (HUS). After reaching the gut, EHEC adhere to the epithelial intestinal cells causing attachment/effacement lesions (A/E lesions). The locus of enterocyte effacement (LEE) encodes for a type three secretion system and several effector proteins required for A/E lesions. The LEE is composed of five main operons (LEE1-5). In this work we identified the molecular mechanisms of one of the regulatory cascades controlling LEE expression. Using qRT-PCR and chromatin immunoprécipitation we determined that GadE and GadX are two indirect repressors of LEE expression. GadE activates gadX expression, and GadX represses ler expression, the latter encoding the main activator of LEE2-5 operons. Moreover, GadE also represses LEE4 and LEE5 expression independently of Ler. In turn, Ler represses gadE and gadX expression. Nitric oxide (NO) is a crucial effector of the innate immune response, in part produced by intestinal epithelial cells. It has been shown previously that NO represses LEE and activates gadE and gadX expression. In this study we identified the key regulator responsible for these regulations: NsrR. NsrR represses indirectly gadE and gadX expression and activates LEE1, LEE4 and LEE5 expression by binding to their respective promoter. In the presence of NO, NsrR is inactivated. Thus, NO directly represses LEE expression by relieving NsrR binding to the LEE1, LEE4 and LEE5 promoters, and indirectly by activating gadE and gadX expression. A regulatory model is proposed based on these results.In addition, we identified and characterized a new phosphodiesterase which is specific for the most virulent EHEC strains: VmpA. By degrading c-di-GMPc, VmpA controls motility, biofilms formation, and probably LEE expression. It would also have a global effect on EHEC physiology.
|
3 |
Rôles des voies de signalisation à di-GMP cyclique chez Legionella pneumophila / Roles of cyclic di-GMP signaling pathways in Legionella pneumophilaAllombert, Julie 15 September 2014 (has links)
Legionella pneumophila est une bactérie aquatique qui prolifère en se répliquant à l’intérieur de cellules amibiennes. Elle peut persister dans ces environnements en vivant en communauté sous forme de biofilms. L’inhalation par l’Homme d’eau contaminée, vaporisée par les réseaux d’eau chaude ou les tours aéro‐réfrigérantes, peut mener à l’infection des macrophages pulmonaires qui se traduit par une grave pneumonie appelée légionellose. Le di‐GMP cyclique (diGMPc) est impliqué, chez diverses espèces bactériennes, dans la transition entre les modes de vie mobiles et sessiles, et chez certains pathogènes, dans la régulation de la virulence. Mon travail de thèse vise à démontrer l’implication des voies de signalisation à diGMPc dans le contrôle de la virulence et de la formation de biofilms par L. pneumophila. Cette implication a été étudiée grâce à l’inactivation systématique de chacun des gènes codant les protéines du métabolisme du diGMPc chez la souche L. pneumophila Lens. Notre étude a révélé que trois de ces protéines, Lpl0780, Lpl0922 et Lpl1118, sont spécifiquement requises pour le contrôle de la virulence et, plus particulièrement, pour la survie précoce lors de l’infection de cellules‐hôtes via l’orchestration de la sécrétion de facteurs de virulence dans la cellule‐hôte. Lpl1118 participerait également à la biogénèse de la vacuole de réplication. Cinq autres de ces protéines sont impliquées dans la régulation de la formation et de l’architecture des biofilms. L’une d’elles est, plus particulièrement, requise pour la formation de biofilms en présence d’oxyde nitrique. Ces résultats contribuent à une meilleure compréhension de l’organisation complexe et spécifique des voies de signalisation à diGMPc chez L. pneumophila et pourraient permettre d’envisager une lutte plus efficace contre ce pathogène / Legionella pneumophila is a bacterium that proliferates in fresh water environments through the replication within amoebas. These bacteria can persist in these environments through biofilm formation. The inhalation of aerosolized contaminated water through hot water systems or cooling towers can induce the infection of human lungs, leading to a severe pneumonia called legionellosis. Cyclic di‐GMP (c‐di‐GMP) in involved, in various bacterial species, in the motility‐to‐sessility transition, and in some pathogens, in virulence control. My work aims to demonstrate the involvement of signaling pathways that use c‐di‐GMP in virulence control and biofilm formation of L. pneumophila. This involvement was investigated by systematically inactivating each gene encoding a c‐di‐GMP‐metabolizing enzyme in L. pneumophila Lens strain. Our work revealed that 3 of these proteins, Lpl0780, Lpl0922 and Lpl1118 are specifically involved in virulence control and, particularly, in the early survival during host cell infection through the orchestration of virulence factors secretion within host cell. Lpl1118 is particularly required for replicative vacuole biogenesis. Five other proteins, participate in the formation and architecture of biofilms. One of them is more specifically involved in biofilm formation in the presence of nitric oxide. These results help to better understand the complexity and the specificity of c‐di‐GMP signaling pathways in L. pneumophila and should allow the exploration of more effective ways to fight this pathogen
|
Page generated in 0.0412 seconds