• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of peroxisome proliferator-activated receptors in diabetic vascular dysfunction. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Aside from an indirect effect of PPARgamma activation to reduce insulin resistance and to facilitate adiponectin release, PPARgamma agonist could also exert direct effects on blood vessels. I provided a first line of experimental evidence demonstrating that PPARgamma agonist rosiglitazone up-regulates the endothelin B receptor (ETBR) expression in mouse aortas and attenuates endothelin-1-induced vasoconstriction through an endothelial ET BR-dependent NO-related mechanism. ETBR up-regulation inhibits endothelin-1-induced endothelin A receptor (ETAR)-mediated constriction in aortas and mesenteric resistance arteries, while selective ETBR agonist produces endothelium-dependent relaxations in mesenteric resistance arteries. Chronic treatment with rosiglitazone in vivo or acute exposure to rosiglitazone in vitro up-regulate the ETsR expression without affecting ETAR expression. These results support a significant role of ETBR in contributing to the increased nitric oxide generation upon stimulation with PPARgamma agonist. This study provides additional explanation for how PPARgamma activation improves endothelial function. / Firstly, I demonstrated that adipocyte-derived adiponectin serves as a key link in PPARgamma-mediated amelioration of endothelial dysfunction in diabetes. Results from ex vivo fat explant culture with isolated arteries showed that PPARgamma expression and adiponectin synthesis in adipose tissues correlate with the degree of improvement of endothelium-dependent relaxation in aortas from diabetic db/db mice. PPARgamma agonist rosiglitazone elevates the adiponectin release and restores the impaired endothelium-dependent relaxation ex vivo and in vivo, in arteries from both genetic and diet-induced diabetic mice. The effect of PPARgamma activation on endothelial function that is mediated through the adiponectin- AMP-activated protein kinase (AMPK) cascade is confirmed with the use of selective pharmacological inhibitors and adiponectin -/- or PPARgamma+/- mice. In addition, the benefit of PPARgamma activation in vivo can be transferred by transplanting subcutaneous adipose tissue from rosiglitazone-treated diabetic mouse to control diabetic mouse. I also revealed a direct effect of adiponectin to rescue endothelium-dependent relaxation in diabetic mouse aortas, which involves both AMPK and cyclic AMP-dependent protein kinase signaling pathways to enhance nitric oxide formation accompanied with inhibition of oxidative stress. These novel findings clearly demonstrate that adipocyte-derived adiponectin is prerequisite for PPARgamma-mediated improvement of endothelial function in diabetes, and thus highlight the prospective of subcutaneous adipose tissue as a potentially important intervention target for newly developed PPARgamma agonists in the alleviation of diabetic vasculopathy. / To summarize, the present investigation has provided a few lines of novel mechanistic evidence in support for the positive roles of PPARgamma and PPARdelta activation as potentially therapeutic targets to combat against diabetic vasculopathy. / Type 2 diabetes mellitus and obesity represent a global health problem worldwide. Most diabetics die of cardiovascular and renal causes, thus increasing the urgency in developing effective strategies for improving cardiovascular outcomes, particularly in obesity-related diabetes. Recent evidence highlights the therapeutic potential of peroxisome proliferators activated receptor (PPAR) agonists in improving insulin sensitivity in diabetes. / While agonists of PPARalpha and PPARgamma are clinically used, PPARdelta is the remaining subtype that is yet to be a target for current therapeutic drugs. Little is available in literature about the role of PPARdelta in the regulation of cardiovascular function. The third part of my thesis focused on elucidating cellular mechanisms underlying the beneficial effect of PPARdelta activation in the modulation of endothelial function in diabetes. PPARdelta agonists restore the impaired endothelium-dependent relaxation in high glucose-treated aortas and in aortas from diabetic db/db mice through activation of a cascade involving PPARdelta, phosphatidylinositol 3-kinase, and Akt. PPARdelta activation increases Akt and endothelial nitric oxide synthase and nitric oxide production in endothelial cells. The crucial role of Akt is confirmed by selective pharmacological inhibitors and transient transfection of dominant negative Akt plasmid in these cells. Treatment with PPARdelta agonist GW501516 in vivo augments endothelial function in diabetic db/db and diet-induced obese mice. The specificity of GW501516 for PPARdelta is proven with the loss of its effect against high glucose-induced impairment of endothelium-dependent relaxation in aortas from PPARdelta knockout mice. In addition, oral administration of GW501516 in vivo fails to improve endothelial function in diet-induced obese PPARdelta deficient mice. / Tian, Xiaoyu. / Adviser: Huang Yu. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 132-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
2

The independent effects of purified EPA and DHA supplementation on cardiovascular risk in treated-hypertensive type 2 diabetic individuals

Woodman, Richard John January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the Abtract for an accurate reproduction.] Type 2 diabetes at least doubles the risk of cardiovascular disease. This can partly be explained by the increased prevalence of risk factors such as hypertension, dyslipidaemia and obesity. However, the underlying abnormality of insulin resistance and the presence of more recently identified risk factors including endothelial dysfunction, increased inflammation, and increased oxidative stress might also contribute towards the heightened cardiovascular risk. Fish oil, which contains eicosapentaenoic acid (EPA, 20:5 n-3), has wide-ranging beneficial effects on these and other abnormalities, and has reduced cardiovascular mortality in secondary prevention studies. Animal and human studies have recently established that in addition to EPA, docosahexaenoic acid (DHA, 22:6 n-3) also has beneficial effects, and furthermore, may have less detrimental effects than EPA on glycaemic control which has worsened in some fish and fish oil studies involving Type 2 diabetic subjects. Study 1 : This intervention study aimed to determine the independent effects of EPA and DHA on cardiovascular risk factors and glycaemic control in individuals with Type 2 diabetes receiving treatment for hypertension. In a double-blind placebo-controlled trial of parallel design, 59 subjects in good to moderate glycaemic control (HbA1c < 9%) were recruited from media advertising and randomised to 4 g/day of EPA, DHA or olive oil (placebo) for 6 weeks. Thirty-nine men and 12 post-menopausal women aged 61.2±1.2 yrs completed the study. Relative to placebo, and with Bonferroni adjustments for multiple comparisons, serum triglycerides fell by 19% (p=0.022) and 15% (p=0.022) in the EPA and DHA groups respectively. There were no changes in serum total cholesterol, or LDL- and HDL-cholesterol, although HDL2-cholesterol increased 16% with EPA (p=0.026) and 12% with DHA (p=0.05). HDL3-cholesterol fell by 11% (p=0.026) with EPA supplementation and LDL particle size increased by 0.26±0.10 nm (p=0.02) with DHA. Urinary F2-isoprostanes, an in-vivo marker of oxidative stress was reduced by 19% following EPA (p=0.034) and by 20% following DHA. DHA but not EPA supplementation reduced collagen-stimulated platelet aggregation (16.9%, p=0.05) and thromboxane release (18.8%, p=0.03), but there were no significant changes in PAF-stimulated platelet aggregation. Fasting glucose rose by 1.40±0.29 mmol/l (p=0.002) following EPA and 0.98±0.29 mmol/l (p=0.002) following DHA. Neither EPA nor DHA had any significant effect on HbA1c, fasting serum insulin or C-peptide, insulin sensitivity, stimulated insulin secretion, 24-hr ambulatory blood pressure and heart rate, markers of inflammation, and fibrinolytic or vascular function. Study 2 : This study aimed to examine the influence and causes of increased inflammation on vascular function in subjects recruited for Study 1. Compared with healthy controls (n=17), the diabetic subjects (n=29) had impaired flow-mediated dilatation (FMD) (3.9±3.0% vs 5.5±2.4%, p=0.07) and glyceryl-trinitrate mediated dilatation (GTNMD) (11.4±4.8% vs 15.4±7.1%, p=0.04) of the brachial artery. They also had higher levels of the inflammatory markers C-reactive protein (2.7±2.6 mg/l vs 1.4±1.1 mg/l, p=0.03), fibrinogen (3.4±0.7 g/l vs 2.7±0.3 g/l, p<0.001) and tumor necrosis factor-alpha (20.9±13.4 pg/l vs 2.5±1.7 pg/l, p<0.001). In diabetic subjects, after adjustment for age and gender, leukocyte count was an independent predictor of FMD (p=0.02), accounting for 17% of total variance. Similarly, leukocyte count accounted for 23% (p<0.001) and IL-6 for 12% (p=0.03) of variance in GTNMD. Von Willebrand factor, a marker of endothelial cell activation was correlated with leukocyte count (r=0.38, p=0.04), FMD (r=-0.35, p=0.06) and GTNMD (r=-0.47, p=0.009), whilst P-selectin, a marker of platelet activation was correlated with fibrinogen (r=0.58, p=0.001). Conclusion : EPA and DHA have similar beneficial effects on triglycerides, HDL2 cholesterol and oxidative stress in individuals with Type 2 diabetes and hypertension. However, DHA also increases LDL particle size and reduces collagen-stimulated platelet aggregation and thromboxane release, thus offering more potential than EPA as an anti-thrombotic agent. The beneficial effects of both oils were potentially offset by deterioration in glycaemic control. Neither oil affected blood pressure or vascular function. Longer-term studies with major morbidity and mortality as the primary outcome measures are required to assess the overall benefits and risks of EPA and DHA. The cross-sectional observations from Study 2 are consistent with the hypothesis that impaired vascular function in individuals with Type 2 diabetes and hypertension is at least in part secondary to increased inflammation, with associated endothelial and platelet activation.

Page generated in 0.0806 seconds