• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The kinetics and thermodynamics of clay mineral reactions

Chermak, John Alan January 1989 (has links)
The diagenesis of rocks during burial occurs in response to changing temperature, pressure, and solution composition. Due to their geologic abundance, high surface area, and reactivity clay minerals are important participants in the diagenesis of clastic rocks. The kinetic and thermodynamic stability of clays is in general poorly understood. This dissertation research measured the rate of transformation of kaolinite to muscovite/illite and developed a method to estimate clay mineral thermodynamic stability. Clastic rock diagenesis is controlled by the rates of silicate mineral growth and transformation. Marine mudstones commonly contain large proportions of kaolinite which reacts during diagenesis to form muscovite/illite and/or chlorite. Batch reactor experiments were used to measure the reaction rate of 1.5 kaolinite + K⁺ = muscovite + H⁺ + 1.5 H₂O using the initial rate method and a fitted form of the integrated rate equation. Experiments were performed at temperatures ranging from 250° to 307°C with solutions of 0.5 - 2.0 m KCl. These results can then be extrapolated to diagenetic temperatures using the Arrhenius equation. ln addition, a technique was developed to estimate the ΔG<sub>f</sub>0 and ∆H<sub>f</sub>0 of silicate minerals. Silicate minerals have been shown to act as a combination of basic polyhedral units (Hazen 1985 and 1988). This work showed that their thermodynamic properties could be modeled as the sum of polyhedral contributions. A multiple linear regression model was used to find the contribution of the oxide and hydroxide components (gᵢ and hᵢ) to the ΔG<sub>f</sub>0 and ∆H<sub>f</sub>0 of a selected group of aluminosilicate minerals at 298 K. The ΔG<sub>f</sub>0 and ∆H<sub>f</sub>0 of other silicate minerals can be estimated from a weighted sum of the contribution of each oxide and hydroxide component (gᵢ and hᵢ). These results can be also used to estimate the ΔG<sub>f</sub>0 of silicate minerals at higher temperatures (up to =600 K) by using the equation, gᵢ(T)= hᵢ(298) - T((hᵢ(298)-gᵢ(298))/298) / Ph. D.

Page generated in 0.0519 seconds