• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explicação em sistemas que utilizam diagramas de influências como formalismo de representação do conhecimento / Explanation in systems that use influence diagrams for Knowledge representation.

Castiñeira, Maria Inés 18 October 1996 (has links)
O presente trabalho discute a necessidade da representação e manipulação de incertezas na resolução de problemas por sistemas baseados em conhecimento, e como isto pode ser realizado utilizando redes de crenças. Este tipo de representação do conhecimento combina a teoria das probabilidades e teoria da decisão, para representar incertezas, com a teoria dos grafos, esta última apropriada para representar as relações de dependência entre as variáveis do modelo. Os diagramas de inferência - redes de crenças que permitem representar incertezas, decisões e preferências do usuário - são discutidos e adotados neste trabalho para desenvolver um sistema normativo de apoio à decisão. A problemática da explicação em sistemas bayesianos, relativamente nova quando comparada com a dos sistemas baseados em regras, é abordada. Neste contexto dois mecanismos de explicação para diagramas de influência são propostos: análise de sensibilidade e as redes probabilísticas qualitativas. Estes mecanismos são usados para gerar conclusões genéricas bem como para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. Uma ferramenta gráfica de apoio à decisão baseada em diagramas de influências foi implementada na linguagem Smalltalk. Este aplicativo não só permite representar e avaliar o problema do usuário como também incorpora as facilidades de explicação acima descritas. A possibilidade de observar graficamente o que acontece com o modelo quando os valores das variáveis são modificados - análise de sensibilidade - permite compreender melhor o problema descobrindo quais as variáveis que influenciam as decisões e auxilia a refinar os valores das variáveis envolvidas. Por outro lado às redes probabilísticas qualitativas permitem realizar abstrações e simplificações apropriadas do modelo, i.e., obter as relações qualitativas do modelo a partir de seu nível quantitativo. As conclusões genéricas obtidas servem tanto para limitar o espaço da estratégia ótima quanto para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. / This work discusses the knowledge representation and uncertainty handling of knowledge based systems that use belief networks for this purpose. These sorts of networks combine the theory of probability and decision theory to represent uncertainty- with graph theory to represent the dependence relations between the model parameters. Systems that use belief networks as knowledge representation are named Bayesian or normative systems. This work investigates and adopts influence diagrams -belief networks that represent uncertainty, decisions and preferences- to develop a normative decision support system. Comprehensible explanations for probabilistic reasoning systems are a prerequisite for wider acceptance of Bayesian methods. Two schemes for explaining influence diagrams are proposed: sensitivity analysis and qualitative probabilistic networks, aiming to find general conclusions and to qualitatively understand the relations between the actions and events of the model. A graphical decision support system that represents the user problem as influence diagrams has been implemented in Smalltalk. This system allows to represent and evaluate decision problems and incorporates the explanation facilities mentioned above. The possibility to observe graphically the model as the variables change -sensitivity analysis- permits a better understanding of the problem by finding the significant variables. This process also helps to adjust the variables values. Furthermore, the qualitative probabilistic networks allow to realize model abstractions and simplifications, i.e., to obtain the qualitative relations from the quantitative level. These general conclusions limit the optimal strategy space and allow to qualitatively understanding the relations between actions and events in the model.
2

Diagramas de influência para comando e controle no processo de seleção de alvos sob o enfoque de operações baseadas em efeitos.

Eduardo Barrios 22 August 2008 (has links)
O surgimento das Operações Baseadas em Efeitos (EBO) remete-se à Primeira Guera do Golfo em 1990, onde sua abordagem na seleção de alvos, combinada com novas tecnologias para a precisão dos armamentos mostrou-se muito eficiente. Porém, ainda hoje, é um desafio o desenvolvimento de ferramentas, conceitos e medidas que possibilitem o seu pleno emprego, motivo maior que desencadeou esta pesquisa. O problema abordado foi o de como representar adequadamente as relações de causa e efeito e quais métricas utilizar para selecionar, dentre as ações disponíveis, as mais adequadas para a consecução do estado final desejado para o combate militar. O objetivo geral do trabalho foi verificar a adequabilidade de conceitos que pudessem servir de suporte para uma futura ferramenta de Comando e Controle (C2) na seleção de alvos sob o enfoque das EBO. A hipótese adotada é a de que os Diagramas de Influência podem modelar adequadamente as EBO. São apresentados os fundamentos de C2, EBO, seleção de alvos e tomadas de decisão em ambientes de incerteza, onde se situam os Diagramas de Influência. Antes da exemplificação do uso do modelo proposto, é analisada sua compatibilidade com as EBO, sua adequação ao ciclo de seleção de alvos e seu emprego no ciclo decisório de C2. Para confirmar a hipótese foram realizadas simulações confrontando-se forças com os mesmos recursos, tecnologia, treinamento militar e tempo de ciclo decisório, diferenciando-se somente pelo processo de seleção de alvos, um lado utilizando o Diagrama de Influência e o outro a filosofia do atrito e aniquilação. A análise teórica permitiu observar que: a modelagem das EBO atende perfeitamente o preconizado para a construção dos Diagramas de Influência, tendo-se as ações inseridas no nó de decisão, os efeitos nos de acaso e o estado final no de utilidade; os Diagramas de Influência auxiliam o desenvolvimento do ciclo de seleção de alvos; e na medida em que representam uma forma de estruturar o problema de seleção de alvos e fornecem um método quantitativo para comparar as diversas alternativas, apoiando a decisão do comandante, podem ser considerados como ferramenta de C2. As simulações comprovaram que os Diagramas de Influência, em ambientes simplificados e hipotéticos, servindo como prova de conceito, modelam adequadamente as relações de causa e efeito, aplicadas à seleção de alvos, confirmando a hipótese estabelecida para o trabalho. Foram realizados, ainda, dois outros experimentos: o primeiro mostrou que a eficiência dos Diagramas de Influência está ligada à habilidade de estruturação do mesmo para a geração de melhores alternativas; e o segundo demonstrou que a eficiência aumenta à medida que o cenário torna-se mais complexo, com um número maior de alvos necessários para a consecução do estado final desejado.
3

Explicação em sistemas que utilizam diagramas de influências como formalismo de representação do conhecimento / Explanation in systems that use influence diagrams for Knowledge representation.

Maria Inés Castiñeira 18 October 1996 (has links)
O presente trabalho discute a necessidade da representação e manipulação de incertezas na resolução de problemas por sistemas baseados em conhecimento, e como isto pode ser realizado utilizando redes de crenças. Este tipo de representação do conhecimento combina a teoria das probabilidades e teoria da decisão, para representar incertezas, com a teoria dos grafos, esta última apropriada para representar as relações de dependência entre as variáveis do modelo. Os diagramas de inferência - redes de crenças que permitem representar incertezas, decisões e preferências do usuário - são discutidos e adotados neste trabalho para desenvolver um sistema normativo de apoio à decisão. A problemática da explicação em sistemas bayesianos, relativamente nova quando comparada com a dos sistemas baseados em regras, é abordada. Neste contexto dois mecanismos de explicação para diagramas de influência são propostos: análise de sensibilidade e as redes probabilísticas qualitativas. Estes mecanismos são usados para gerar conclusões genéricas bem como para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. Uma ferramenta gráfica de apoio à decisão baseada em diagramas de influências foi implementada na linguagem Smalltalk. Este aplicativo não só permite representar e avaliar o problema do usuário como também incorpora as facilidades de explicação acima descritas. A possibilidade de observar graficamente o que acontece com o modelo quando os valores das variáveis são modificados - análise de sensibilidade - permite compreender melhor o problema descobrindo quais as variáveis que influenciam as decisões e auxilia a refinar os valores das variáveis envolvidas. Por outro lado às redes probabilísticas qualitativas permitem realizar abstrações e simplificações apropriadas do modelo, i.e., obter as relações qualitativas do modelo a partir de seu nível quantitativo. As conclusões genéricas obtidas servem tanto para limitar o espaço da estratégia ótima quanto para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. / This work discusses the knowledge representation and uncertainty handling of knowledge based systems that use belief networks for this purpose. These sorts of networks combine the theory of probability and decision theory to represent uncertainty- with graph theory to represent the dependence relations between the model parameters. Systems that use belief networks as knowledge representation are named Bayesian or normative systems. This work investigates and adopts influence diagrams -belief networks that represent uncertainty, decisions and preferences- to develop a normative decision support system. Comprehensible explanations for probabilistic reasoning systems are a prerequisite for wider acceptance of Bayesian methods. Two schemes for explaining influence diagrams are proposed: sensitivity analysis and qualitative probabilistic networks, aiming to find general conclusions and to qualitatively understand the relations between the actions and events of the model. A graphical decision support system that represents the user problem as influence diagrams has been implemented in Smalltalk. This system allows to represent and evaluate decision problems and incorporates the explanation facilities mentioned above. The possibility to observe graphically the model as the variables change -sensitivity analysis- permits a better understanding of the problem by finding the significant variables. This process also helps to adjust the variables values. Furthermore, the qualitative probabilistic networks allow to realize model abstractions and simplifications, i.e., to obtain the qualitative relations from the quantitative level. These general conclusions limit the optimal strategy space and allow to qualitatively understanding the relations between actions and events in the model.
4

Diagramas de influência e teoria estatística / Influence Diagrams and Statistical Theory

Stern, Rafael Bassi 09 January 2009 (has links)
O objetivo principal deste trabalho foi analisar o controverso conceito de informação em estatística. Para tal, primeiramente foi estudado o conceito de informação dado por Basu. A seguir, a análise foi dividida em três partes: informação nos dados, informação no experimento e diagramas de influência. Nas duas primeiras etapas, sempre se tentou definir propriedades que uma função de informação deveria satisfazer para se enquadrar ao conceito. Na primeira etapa, foi estudado como o princípio da verossimilhança é uma classe de equivalência decorrente de acreditar que experimentos triviais não trazem informação. Também foram apresentadas métricas que satisfazem o princípio da verossimilhança e estas foram usadas para avaliar um exemplo intuitivo. Na segunda etapa, passamos para o problema da informação de um experimento. Foi apresentada a relação da suficiência de Blackwell com experimentos triviais e o conceito usual de suficiência. Também foi analisada a equivalência de Blackwell e a sua relação com o Princípio da Verossimilhança anteriormente estudado. Além disso, as métricas apresentadas para medir a informação de conjuntos de dados foram adaptadas para também medir a informação de um experimento. Finalmente, observou-se que nas etapas anteriores uma série de simetrias mostraram-se como elementos essenciais do conceito de informação. Para ganhar intuição sobre elas, estas foram reescritas através da ferramenta gráfica dos diagramas de influência. Assim, definições como suficiência, suficiência de Blackwell, suficiência mínima e completude foram reapresentadas apenas usando essa ferramenta. / The main objective of this work is to analyze the controversial concept of information in Statistics. To do so, firstly the concept of information according to Basu is presented. Next, the analysis is divided in three parts: information in a data set, information in an experiment and influence diagrams. In the first two parts, we always tried to define properties an information function should satisfy in order to be in accordance to the concept of Basu. In the first part, it was studied how the likelihood principle is an equivalence class which follows from believing that trivial experiments do not bring information. Metrics which satisfy the likelihood principle were also presented and used to analyze an intuitive example. In the second part, the problem became that of determining information of a particular experiment. The relation between Blackwell\'s suciency, trivial experiments and classical suciency was presented. Blackwell\'s equivalence was also analyzed and its relationship with the Likelihood Principle was exposed. The metrics presented to evaluate the information in a data set were also adapted to do so with experiments. Finally, in the first parts a number of symmetries were shown as essencial elements of the concept of information. To gain more intuition about these elements, we tried to rewrite them using the graphic tool of influence diagrams. Therefore, definitions as sufficiency, Blackwell\'s sufficiency, minimal sufficiency and completeness were shown again, only using influence diagrams.
5

Diagramas de influência e teoria estatística / Influence Diagrams and Statistical Theory

Rafael Bassi Stern 09 January 2009 (has links)
O objetivo principal deste trabalho foi analisar o controverso conceito de informação em estatística. Para tal, primeiramente foi estudado o conceito de informação dado por Basu. A seguir, a análise foi dividida em três partes: informação nos dados, informação no experimento e diagramas de influência. Nas duas primeiras etapas, sempre se tentou definir propriedades que uma função de informação deveria satisfazer para se enquadrar ao conceito. Na primeira etapa, foi estudado como o princípio da verossimilhança é uma classe de equivalência decorrente de acreditar que experimentos triviais não trazem informação. Também foram apresentadas métricas que satisfazem o princípio da verossimilhança e estas foram usadas para avaliar um exemplo intuitivo. Na segunda etapa, passamos para o problema da informação de um experimento. Foi apresentada a relação da suficiência de Blackwell com experimentos triviais e o conceito usual de suficiência. Também foi analisada a equivalência de Blackwell e a sua relação com o Princípio da Verossimilhança anteriormente estudado. Além disso, as métricas apresentadas para medir a informação de conjuntos de dados foram adaptadas para também medir a informação de um experimento. Finalmente, observou-se que nas etapas anteriores uma série de simetrias mostraram-se como elementos essenciais do conceito de informação. Para ganhar intuição sobre elas, estas foram reescritas através da ferramenta gráfica dos diagramas de influência. Assim, definições como suficiência, suficiência de Blackwell, suficiência mínima e completude foram reapresentadas apenas usando essa ferramenta. / The main objective of this work is to analyze the controversial concept of information in Statistics. To do so, firstly the concept of information according to Basu is presented. Next, the analysis is divided in three parts: information in a data set, information in an experiment and influence diagrams. In the first two parts, we always tried to define properties an information function should satisfy in order to be in accordance to the concept of Basu. In the first part, it was studied how the likelihood principle is an equivalence class which follows from believing that trivial experiments do not bring information. Metrics which satisfy the likelihood principle were also presented and used to analyze an intuitive example. In the second part, the problem became that of determining information of a particular experiment. The relation between Blackwell\'s suciency, trivial experiments and classical suciency was presented. Blackwell\'s equivalence was also analyzed and its relationship with the Likelihood Principle was exposed. The metrics presented to evaluate the information in a data set were also adapted to do so with experiments. Finally, in the first parts a number of symmetries were shown as essencial elements of the concept of information. To gain more intuition about these elements, we tried to rewrite them using the graphic tool of influence diagrams. Therefore, definitions as sufficiency, Blackwell\'s sufficiency, minimal sufficiency and completeness were shown again, only using influence diagrams.

Page generated in 0.0887 seconds