Spelling suggestions: "subject:"diameter variation"" "subject:"aiameter variation""
1 |
A New Analytical Model for Tool Life in Metal StampingSyed, Abdul Vali 05 1900 (has links)
<p> Tool life during the precision stamping of stainless steel sheet (AISI 301) has been studied with particular emphasis on reduction in the punch diameter and part hole size due to tool wear. Two analytical models for predicting tool life in terms of number of quality parts that could be stamped between two re-grindings have been proposed using a combination of Archard's wear model and punching force. The proposed tool life models have been verified by experiment trials with a round M2 punch and die. The trials were carried out on a precision
progressive die in an industrial environment.</p> <p> The first tool life model calculates the pierced hole diameter variation for a given tool from sheet material properties and gives an estimation of number of parts that could be stamped for a given tolerance on a hole size. The second tool life model calculates number of parts with respect to the allowed burr height. Both
of the proposed models are derived using sheet material properties such as sheet thickness, strength coefficient (K), strain hardening index (n) and material elongation (A); process parameters such as die clearance and friction coefficient; punch characteristics such as normalized wear rate, punch diameter and punch edge radius. Finite element analysis was also employed to simulate the hole piercing process to predict burr height. The results from the proposed tool life models, FE modeling and the experiments are in good agreement.</p> / Thesis / Master of Applied Science (MASc)
|
2 |
Modelo para determinação da perda de carga contínua em tubos elásticos / Model for determining the continuous head losses in elastic pipeRettore Neto, Osvaldo 05 August 2011 (has links)
Nos projetos hidráulicos de irrigação são contabilizadas as perdas de carga totais, que seriam as perdas contínuas ou principais e as localizadas, objetivando maximizar a uniformidade de distribuição de água, caracterizando um conjunto motobomba adequado ao sistema de irrigação e com isso, minimizando os custos anuais e de implantação do projeto. Com o uso da informática, problemas de cálculos complexos são resolvidos com muita facilidade; desta forma pode-se aplicar modelos mais complexo para calculo da perda de carga nos sistemas de irrigação, resultando em valores mais próximos da realidade, com maiores riquezas de detalhes. A perda de carga representa a dissipação de energia da água em forma de calor, ao longo da tubulação, decorrente da resistência ao escoamento oferecida pela viscosidade do fluido e pela inércia das partículas. É variável de acordo com o tamanho das rugosidades da parede do tubo, diâmetro da tubulação e com a velocidade da água. A indústria de plásticos e seus derivados, com o auxilio da engenharia, tem aprimorado a qualidade dos materiais destinados à fabricação dos tubos, principalmente de polietileno. A utilização de tubos fabricados de matérias plásticos, de menor custo, destinados à irrigação tem aumentado nos últimos anos. A flexibilidade desses tubos traz como consequência o aumento do diâmetro interno com o aumento da pressão, fato este já observado em pesquisa e que não são levados em consideração pelos equacionamentos matemáticos utilizados para determinação da perda de carga. O presente trabalho propõe um modelo onde leva em consideração o módulo de elasticidade (E) do tubo para determinar a alteração do diâmetro em tubos elásticos provocada pela pressão, afetando assim a determinação da perda de carga contínua. Conhecer detalhadamente a causa da perda de energia, com intuito de cada vez mais otimizar a energia gasta por área irrigada no cenário brasileiro, passa a ser de fundamental importância. O Modelo Elástico proposto associado à Equação Universal, apresentou índice de desempenho médio de 0,9 sendo considerado com uma estimativa muito boa da realidade. / Total head losses are accounted in the irrigation hydraulic projects, that would be the continuous losses and the local head losses, aiming to maximize the uniformity of water distribution, characterizing an adequate pump set to the irrigation system e thus, minimizing the project implantation and annual costs. With informatics support, complex calculation problems are solved with ease, therefore it is possible to apply more complex models for head loss calculation in the irrigation system, resulting in values closer to the reality, with greater details. The head loss represents the water energy dissipation as heat, along the piping, due to the resistance to the flow offered by the fluid viscosity and by the particles inertia. It is variable according to the size of the rugosities of the pipe wall, piping diameter and the water velocity. plastic industry and its derivates, with engineering support, have improved the quality of the materials for the pipe manufacturing, mainly polyethylene. The usage of plastic material pipes for irrigation, of lowest cost, has risen in the latest years. The flexibility of these pipes leads to the internal diameter increase with pressure increase, fact already observed in research and that are not taken into account by mathematics equating used to determine the head loss. This paper proposes a model where it takes into account the elastic module (E) of the pipe to determine the diameter alteration in elastic pipes due to the pressure, affecting the determination of continuous head loss. Elastic Module proposed associated to Universal Equation, showed average performance rate of 0,9% being considered a extremely good estimative of reality.
|
3 |
Modelo para determinação da perda de carga contínua em tubos elásticos / Model for determining the continuous head losses in elastic pipeOsvaldo Rettore Neto 05 August 2011 (has links)
Nos projetos hidráulicos de irrigação são contabilizadas as perdas de carga totais, que seriam as perdas contínuas ou principais e as localizadas, objetivando maximizar a uniformidade de distribuição de água, caracterizando um conjunto motobomba adequado ao sistema de irrigação e com isso, minimizando os custos anuais e de implantação do projeto. Com o uso da informática, problemas de cálculos complexos são resolvidos com muita facilidade; desta forma pode-se aplicar modelos mais complexo para calculo da perda de carga nos sistemas de irrigação, resultando em valores mais próximos da realidade, com maiores riquezas de detalhes. A perda de carga representa a dissipação de energia da água em forma de calor, ao longo da tubulação, decorrente da resistência ao escoamento oferecida pela viscosidade do fluido e pela inércia das partículas. É variável de acordo com o tamanho das rugosidades da parede do tubo, diâmetro da tubulação e com a velocidade da água. A indústria de plásticos e seus derivados, com o auxilio da engenharia, tem aprimorado a qualidade dos materiais destinados à fabricação dos tubos, principalmente de polietileno. A utilização de tubos fabricados de matérias plásticos, de menor custo, destinados à irrigação tem aumentado nos últimos anos. A flexibilidade desses tubos traz como consequência o aumento do diâmetro interno com o aumento da pressão, fato este já observado em pesquisa e que não são levados em consideração pelos equacionamentos matemáticos utilizados para determinação da perda de carga. O presente trabalho propõe um modelo onde leva em consideração o módulo de elasticidade (E) do tubo para determinar a alteração do diâmetro em tubos elásticos provocada pela pressão, afetando assim a determinação da perda de carga contínua. Conhecer detalhadamente a causa da perda de energia, com intuito de cada vez mais otimizar a energia gasta por área irrigada no cenário brasileiro, passa a ser de fundamental importância. O Modelo Elástico proposto associado à Equação Universal, apresentou índice de desempenho médio de 0,9 sendo considerado com uma estimativa muito boa da realidade. / Total head losses are accounted in the irrigation hydraulic projects, that would be the continuous losses and the local head losses, aiming to maximize the uniformity of water distribution, characterizing an adequate pump set to the irrigation system e thus, minimizing the project implantation and annual costs. With informatics support, complex calculation problems are solved with ease, therefore it is possible to apply more complex models for head loss calculation in the irrigation system, resulting in values closer to the reality, with greater details. The head loss represents the water energy dissipation as heat, along the piping, due to the resistance to the flow offered by the fluid viscosity and by the particles inertia. It is variable according to the size of the rugosities of the pipe wall, piping diameter and the water velocity. plastic industry and its derivates, with engineering support, have improved the quality of the materials for the pipe manufacturing, mainly polyethylene. The usage of plastic material pipes for irrigation, of lowest cost, has risen in the latest years. The flexibility of these pipes leads to the internal diameter increase with pressure increase, fact already observed in research and that are not taken into account by mathematics equating used to determine the head loss. This paper proposes a model where it takes into account the elastic module (E) of the pipe to determine the diameter alteration in elastic pipes due to the pressure, affecting the determination of continuous head loss. Elastic Module proposed associated to Universal Equation, showed average performance rate of 0,9% being considered a extremely good estimative of reality.
|
4 |
The relevance of fog and dew precipitation to succulent plant hydrology in an arid South African ecosystemMatimati, Ignatious January 2009 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / Fog and dew interception and utilization by plant canopies remains one of the least
considered aspects of vegetation studies at any scale yet the few studies that have been conducted point to their considerable influence on ecological processes and a critical role in modulating climate in southern African arid ecosystems. Their relevance to succulent plant hydrology was investigated in this study.The first study measured stable 18O and 2H isotope ratios in samples of rain, fog and dew water and compared these with those assayed monthly in stem xylem water of six
succulent shrub species over a one year period. Negative 18O and 2H ratios were observed in the stem xylem water of all six species signifying a predominance of water derived from fog and dew precipitation which was most conspicuous during the wet winter. This implied that fog and dew are even more important sources of water than rain and corroborated by significant correspondence found between fog and dew frequencies, succulent foliar water
contents and quantum yields of photochemistry.The second study monitored variations in stem diameter at 2-hourly intervals in 8 succulent shrub species of diverse growth form over a 9-month period. Two groups of species were distinguished based on whether their daily amplitudes in stem diameter were
consistently positively correlated with daily fluxes in vapour pressure deficit, which were indicative of a persistent CAM photosynthetic mode, or intermittently correlated with daily fluxes in vapour pressure deficit, which were indicative of mixed CAM and C3 photosynthetic modes. Among species displaying a persistent CAM photosynthetic mode, high nocturnal fog and dew precipitation amounts corresponded with low daily amplitudes in stem diameter, and vice versa, which pointed to reduced nocturnal stomatal water loss. These patterns, which were indistinct among species displaying mixed CAM and C3 photosynthetic modes, were
corroborated by small daily amplitudes in stem diameter also consistently observed in one species displaying a CAM photosynthetic mode in ambient than artificially fog and dew excluded environments.The third study monitored changes in water mass at hourly intervals of quartz gravel substrates with different dwarf succulent species assemblages over an 8-month period.Consistently greater net amounts of water were intercepted daily by quartz gravel substrates containing Agyroderma pearsonii than Cephalophylum spissum plants as well as those without plants. These attributed to a high water repellence of A. pearsonii leaves and less
radiation absorbed by the paler silvery to grey-green leaves of A. pearsonii leaves than the dark green leaves of C. spissum resulting in lower leaf temperatures and less water loss by transpiration. Quartz gravel soils devoid of plants intercepted nearly 5-times greater amounts of precipitation contributed by fog and dew than that contributed by rain. These precipitation amounts exceeding the high percentages of total hydrological input contributed by fog and dew reported in other ecosystems.The study concludes that fog and dew are a vital source of water for succulent shrubs in arid South African ecosystems and imply that diminished fog and dew frequencies associated with elevated night time temperatures accompanying global warming could exacerbate plant drought stress.
|
Page generated in 0.1352 seconds