Spelling suggestions: "subject:"diamond hemma"" "subject:"diamond lemma""
1 |
Gröbner Bases Theory and The Diamond LemmaGe, Wenfeng January 2006 (has links)
Commutative Gröbner bases theory is well known and widely used. In this thesis, we will discuss thoroughly its generalization to noncommutative polynomial ring <em>k</em><<em>X</em>> which is also an associative free algebra. We introduce some results on monomial orders due to John Lawrence and the author. We show that a noncommutative monomial order is a well order while a one-sided noncommutative monomial order may not be. Then we discuss the generalization of polynomial reductions, S-polynomials and the characterizations of noncommutative Gröbner bases. Some results due to Mora are also discussed, such as the generalized Buchberger's algorithm and the solvability of ideal membership problem for homogeneous ideals. At last, we introduce Newman's diamond lemma and Bergman's diamond lemma and show their relations with Gröbner bases theory.
|
2 |
Gröbner Bases Theory and The Diamond LemmaGe, Wenfeng January 2006 (has links)
Commutative Gröbner bases theory is well known and widely used. In this thesis, we will discuss thoroughly its generalization to noncommutative polynomial ring <em>k</em><<em>X</em>> which is also an associative free algebra. We introduce some results on monomial orders due to John Lawrence and the author. We show that a noncommutative monomial order is a well order while a one-sided noncommutative monomial order may not be. Then we discuss the generalization of polynomial reductions, S-polynomials and the characterizations of noncommutative Gröbner bases. Some results due to Mora are also discussed, such as the generalized Buchberger's algorithm and the solvability of ideal membership problem for homogeneous ideals. At last, we introduce Newman's diamond lemma and Bergman's diamond lemma and show their relations with Gröbner bases theory.
|
3 |
A Noncommutative CatenoidHolm, Christoffer January 2017 (has links)
Noncommutative geometry generalizes many geometric results from such fields as differential geometry and algebraic geometry to a context where commutativity cannot be assumed. Unfortunately there are few concrete non-trivial examples of noncommutative objects. The aim of this thesis is to construct a noncommutative surface <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D_%5Chbar" /> which will be a generalization of the well known surface called the catenoid. This surface will be constructed using the Diamond lemma, derivations will be constructed over <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D_%5Chbar" /> and a general localization will be provided using the Ore condition.
|
4 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
<p>The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds.</p><p>There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation.</p><p>The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.</p>
|
5 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.
|
Page generated in 0.035 seconds