Spelling suggestions: "subject:"diamond detector"" "subject:"oiamond detector""
11 |
Development of the diamond detector based real-time monitoring system for the ELI-NP gamma beam source / Développement du système de contrôle en temps-réel basé sur un détecteur diamant pour la source de rayons gamma ELI-NPWilliams, Themistoklis 04 October 2018 (has links)
Cette thèse présente le développement d'un système de contrôle en temps réel basé sur un détecteur en diamant pour la nouvelle source de rayons gamma en cours de construction à Magurele, en Roumanie, pour le projet Extreme Light Infrastructure (ELI). La machine comprend un accélérateur linéaire d'électrons qui se sépare en deux lignes, une à basse énergie entre 80 et 320 MeV et l'autre à plus haute énergie pouvant atteindre 720 MeV. Sur les deux lignes, un recirculateur optique guide un laser haute puissance pour entrer en collision avec 32 paquets d'électrons afin de produire des rayons gamma par interaction Compton inverse. Cette machine est construite par le consortium européen EuroGammaS, dont le Laboratoire de l'Accélérateur Linéaire fait partie et qui a pour mission de développer la plupart des composants optiques. C'est aussi là où j'ai préparé le travail présenté dans ce manuscrit. Les paquets d'électrons séparés de 16 ns collisionneront avec une impulsion laser à une fréquence de 100 Hz. Pour s'assurer de la qualité et de la stabilité de ces interactions, le système du détecteur diamant a été mis en place. Cela a impliqué du travail de simulation sous GEANT4 ainsi que des expériences pour tester l'équipement à HiGS aux Etats-Unis et à newSubaru au Japon, deux établissements scientifiques qui proposent aussi des sources de rayons gamma produits par interaction Compton inverse. Les résultats obtenus démontrent l'efficacité de ce système en analysant l'efficacité de détection, la charge collectée ou encore la forme de faisceau. Ceci est encourageant en vue de l'installation et du commissioning qui sont attendus pour 2019. / This thesis discusses the development of a real-time monitoring system based on a diamond detector for the new gamma source being built in Magurele, Romania as part of the Extreme Light Infrastructure (ELI) project. The machine consists of an electron linear accelerator that branches into two lines, one at low energy between 80 and 320 MeV and one at higher energy going up to 720 MeV. On both lines, an optical recirculator leads a high power laser to collide with 32 electrons bunches to produce gamma rays by inverse Compton interaction. This machine is built by a European consortium named EuroGammaS, of which the "Laboratoire de l'Accélérateur Linéaire" is a member and tasked with developing most of the optical components. This is where I prepared the work presented in this manuscript. The electron bunches separated by 16 ns will collide with a circulating laser pulse at a rate of 100 Hz. To monitor the quality and stability of these interactions, the diamond detector system has been set-up. This involved simulation work on GEANT4 as well as two experiments to test the equipment at HiGS in the USA and newSubaru in Japan, two facilities that also offer gamma ray beams produced by inverse Compton scattering. The results obtained demonstrate the effectiveness of the system by analysing detection efficiency, charge collected or beam shape. This is promising in anticipation of the installation and commissioning expected for 2019.
|
12 |
Charge Transport in Single-crystalline CVD DiamondGabrysch, Markus January 2010 (has links)
Diamond is a semiconductor with many superior material properties such as high breakdown field, high saturation velocity, high carrier mobilities and the highest thermal conductivity of all materials. These extreme properties, as compared to other (wide bandgap) semiconductors, make it desirable to develop single-crystalline epitaxial diamond films for electronic device and detector applications. Future diamond devices, such as power diodes, photoconductive switches and high-frequency field effect transistors, could in principle deliver outstanding performance due to diamond's excellent intrinsic properties. However, such electronic applications put severe demands on the crystalline quality of the material. Many fundamental electronic properties of diamond are still poorly understood, which severely holds back diamond-based electronic device and detector development. This problem is largely due to incomplete knowledge of the defects in the material and due to a lack of understanding of how these defects influence transport properties. Since diamond lacks a shallow dopant that is fully thermally activated at room temperature, the conventional silicon semiconductor technology cannot be transferred to diamond devices; instead, new concepts have to be developed. Some of the more promising device concepts contain thin delta-doped layers with a very high dopant concentration, which are fully activated in conjunction with undoped (intrinsic) layers where charges are transported. Thus, it is crucial to better understand transport in high-quality undoped layers with high carrier mobilities. The focus of this doctoral thesis is therefore the study of charge transport and related electronic properties of single-crystalline plasma-deposited (SC-CVD) diamond samples, in order to improve knowledge on charge creation and transport mechanisms. Fundamental characteristics such as drift mobilities, compensation ratios and average pair-creation energy were measured. Comparing them with theoretical predictions from simulations allows for verification of these models and improvement of the diamond deposition process.
|
13 |
Ion energy loss at maximum stopping power in a laser-generated plasmaCayzac, Witold 02 December 2013 (has links) (PDF)
In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary analysis suggests that the energy deposition at maximum stopping power is significantly smaller than predicted, particularly, by perturbation approaches.
|
14 |
Ion energy loss at maximum stopping power in a laser-generated plasma / Dépôt d'énergie des ions à pouvoir d'arrêt maximal dans un plasma généré par laserCayzac, Witold 02 December 2013 (has links)
Dans le cadre de cette thèse, un nouveau dispositif expérimental pour la mesure du dépôt d'energie d'ions carbone au maximum du pouvoir d'arrêt dans un plasma généré par laser a été développé et testé avec succès. Dans ce domaine de paramètres où la vitesse du projectile est de l'ordre de grandeur de la vitesse thermique des électrons libres du plasma, l'incertitude théorique sur le pouvoir d'arrêt peut atteindre 50%. Or à l'heure actuelle, aucune donnée expérimentale ne permet de vérifier et de tester les différentes prédictions. Une discrimination des théories existantes du pouvoir d'arrêt est cependant essentielle pour la Fusion par Confinement Inertiel et particulièrement pour comprendre le chauffage du combustible par les particules alpha dans la phase d'allumage. Pour la première fois, des mesures précises du dépôt d'énergie des ions ont été effectuées dans une configuration expérimentale reproductible et entièrement caractérisée. Celle-ci consiste en un faisceau d'ions entièrement ionisé interagissant avec un plasma entièrement ionisé et homogène. Le plasma a été généré par l'irradiation d'une cible mince de carbone avec deux faisceaux laser à haute énergie et présente une température électronique maximale of 200 eV. Les paramètres du plasma ont été simulés à l'aide d'un code hydrodynamique radiatif bi-dimensionel, tandis que la distribution de charge du faisceau d'ions a été estimée avec un code Monte-Carlo qui décrit les processus d'échange de charge des ions dans le plasma. Pour sonder le plasma au maximum du pouvoir d'arrêt, un faisceau d'ions pulsé à haute fréquence a été freiné à une énergie de 0.5 MeV par nucléon. Le dépôt d'énergie des ions a été déterminé via une mesure de temps de vol à l'aide d'un détecteur à base de diamant produit par dépôt chimique en phase vapeur, protégé contre les radiations émises par le plasma. Une première campagne expérimentale a été conduite pour exploiter le nouveau dispositif, dans laquelle le dépôt d'énergie a été mesuré avec une précision inférieure à 200 keV. Cela a permis, grâce à la connaissance des paramètres du plasma et du faisceau d'ions, de tester différentes théories de pouvoir d'arrêt de manière fiable. Une analyse préliminaire des résultats montre que le dépôt d'énergie au maximum du pouvoir d'arrêt est plus faible qu'il n'a été prédit par la plupart des théories, et en particulier par les théories des perturbations. / In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary analysis suggests that the energy deposition at maximum stopping power is significantly smaller than predicted, particularly, by perturbation approaches. / Im Rahmen dieser Arbeit wurde ein neuer experimentelle Aufbau für die Messung des Energieverlusts von Kohlenstoff-Ionen bei maximalem Bremsvermögen in einem lasererzeugtem Plasma entwickelt und getestet. In diesem Parameterbereich, wo die Projektilgeschwindigkeit nah der thermischen Geschwindigkeit der Plasmaelektronen liegt, weist die theoretische Beschreibung des Bremsvermögens erheblichen Unsicherheiten bis 50% auf. Ausserdem sind bisher keine experimentellen Daten verfügbar, um die theoretischen Vorhersagen zu testen. Eine Bewertung der verschiedenen Theorien des Bremsvermögens ist jedoch von grosser Bedeutung für die Trägheitsfusion und insbesondere für das Verständnis der Heizung des Fusionsbrennstoffs mittels Alpha-Teilchen. Zum ersten Mal wurden präzisen Messungen in einer reproduzierbaren und vollständig bekannten Strahl-Plasma Einstellung durchgeführt. Sie besteht in einem vollionisierten Ionenstrahl, der mit einem homogenen und vollionisierten Plasma wechselwirkt. Das Plasma wurde von der Bestrahlung einer dünnen Kohlenstofffolie mit zwei hochenergetischen Laserstrahlen erzeugt, und weist eine maximale Elektronentemperatur von 200 eV auf. Die Plasmaparameter wurden mithilfe eines zweidimensionalen radiativen hydrodynamischen Codes simuliert, während die Ladungsverteilung des Ionenstrahls wurde mit einem Monte-Carlo Code berechnet, der die Umladungsprozesse von Projektilionen im Plasma beschreibt. Um das Plasma bei maximalem Bremsvermögen zu untersuchen, wurde ein hoch-Frequenz gepulster Ionenstrahl zu einer Energie von 0.5 MeV pro Nukleon heruntergebremst. Der Ionenenergieverlust wurde mit der Flugzeitsmethode mit einem gegen Plasmastrahlung abgeschirmten CVD-Diamant-Detektor gemessen. Eine erste experimentelle Kampagne wurde mit dem neuen Aufbau durchgeführt, in der eine Messungspräzision besser als 200 keV auf dem Energieverlust erreicht wurde. Dies ermöglichte, mit der Kenntnis der Plasma- und Strahlparameter, mehreren Bremsvermögen-Theorien zuverlässig zu testen und zu vergleichen. Eine vorläufige Datenanalyse zeigt, dass die Energiedeposition bei maximalem Bremsvermögen ist kleiner, als insbesondere von den störungstheoretischen Ansätzen vorhergesagt wurde.
|
Page generated in 0.0424 seconds