• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Diaphragm Flexibility on the Seismic Performance of Light Frame Wood Structures

Pathak, Rakesh 11 July 2008 (has links)
This dissertation presents work targeted to study the effects of diaphragm flexibility on the seismic performance of light frame wood structures (LFWS). The finite element approach is considered for modeling LFWS as it is more detailed and provides a way to explicitly incorporate individual structural elements and corresponding material properties. It is also suitable for capturing the detailed response of LFWS components and the structure as a whole. The finite element modeling methodology developed herein is in general based on the work done by the other finite element researchers in this area. However, no submodeling or substructuring of subassemblages is performed and instead a detailed model considering almost every connection in the shear walls and diaphragms is developed. The studs, plates, sills, blockings and joists are modeled using linear isotropic three dimensional frame elements. A linear orthotropic shell element incorporating both membrane and plate behavior is used for the sheathings. The connections are modeled using oriented springs with modified Stewart hysteresis spring stiffnesses. The oriented spring pair has been found to give a more accurate representation of the sheathing to framing connections in shear walls and diaphragms when compared to non-oriented or single springs typically used by most researchers in the past. Fifty six finite element models of LFWS are created using the developed methodology and eighty eight nonlinear response history analyses are performed using the Imperial Valley and Northridge ground motions. These eighty eight analyses encompass the parametric study on the house models with varying aspect ratios, diaphragm flexibility and lateral force resisting system. Torsionally irregular house models showed the largest range of variation in peak base shear of individual shear walls, when corresponding flexible and rigid diaphragm models are compared. It is also found that presence of an interior shear wall helps in reducing peak base shears in the boundary walls of torsionally irregular models. The interior walls presence was also found to reduce the flexibility of diaphragm. A few analyses also showed that the nail connections are the major source of in-plane flexibility compared to sheathings within a diaphragm, irrespective of the aspect ratio of the diaphragm. A major part of the dissertation focuses on the development of a new high performance nonlinear dynamic finite element analysis program which is also used to analyze all the LFWS finite element models presented in this study. The program is named WoodFrameSolver and is written on a mixed language platform Microsoft Visual Studio .NET using object-oriented C++, C and FORTRAN. This tool set is capable of performing basic structural analysis chores like static and dynamic analysis of 3D structures. It has a wide collection of linear, nonlinear and hysteretic elements commonly used in LFWS analysis. The advanced analysis features include static, nonlinear dynamic and incremental dynamic analysis. A unique aspect of the program lies in its capability of capturing elastic displacement participation (sensitivity) of spring, link, frame and solid elements in static analysis. The program's performance and accuracy are similar to that of SAP 2000 which is chosen as a benchmark for validating the results. The use of fast and efficient serial and parallel solver libraries obtained from INTEL has reduced the solution time for repetitive dynamic analysis. The utilization of the standard C++ template library for iterations, storage and access has further optimized the analysis process, especially when problems with a large number of degrees of freedom are encountered. / Ph. D.
2

Development of a Comprehensive Linear Response History Analysis Procedure for Seismic Load Analysis

Tola, Adrian Patricio 11 March 2011 (has links)
This thesis reviews the parameters required to perform linear response history analysis according to Chapter 16 of the American Standard ASCE 7-10. A careful analysis is presented about the selection of ground motions using real records and using artificial records generated such that their response spectrum matches with a defined target spectrum; three different techniques are studied for the generation of these artificial records. Also, this document revises the scaling of ground motion techniques in the American Standard ASCE-7 as well as in other seismic codes. It presents a detailed analysis of the variables influencing the scaling of ground motions, and it suggests a new scaling technique for linear response history analysis. The assumptions made establishing the flexibility of the diaphragms are also analyzed as well as dynamic methods to include accidental torsion when doing a linear response history analysis. Other modeling issues such as the orientation of the ground motion axis, scaling of element forces and displacements, orthogonal loading, solution techniques, P-Delta effects, modeling of the basement, and calculation of drifts are also studied in the context of linear response history analysis. The thesis concludes with suggested code language for linear response history analysis intended to be considered in future editions of the American Standard ASCE 7. / Master of Science
3

An Investigation of the Influence of Diaphragm Flexibility on Building Design Through a Comparison of Forced Vibration Testing and Computational Analysis

Roskelley, Blake Alan 01 November 2010 (has links) (PDF)
An assessment of the validity of idealizing a concrete diaphragm as rigid was performed through the modal analysis of three existing buildings. Modal analysis was performed both by physical experimentation and computational analysis. Experimental determination of the mode shapes shows that two of the three buildings’ diaphragms exhibited flexible behavior. The experimental results were compared to computational analysis results and were shown to be similar, confirming that that the two building diaphragms are not rigid. As a standard, diaphragms with aspect ratios less than three are permitted to be idealized as rigid per ASCE 7-05. To determine the effect of the rigid diaphragm idealization, the design forces and roof deflections for each building were determined from the computational model through a spectral analysis for both a model with rigid diaphragms and a model with semi-rigid diaphragms. It was found that the design seismic demands for the two buildings with flexible diaphragms were higher when modeled with semi-rigid diaphragms than with rigid diaphragms. The conclusion is made that idealizing a concrete diaphragm as rigid solely based on its aspect ratio may result in an unconservative estimate of the seismic demands on a building.

Page generated in 0.0487 seconds