• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The origin and evolution of North American kimberlites

Zurevinski, Shannon Unknown Date
No description available.
2

The origin and evolution of North American kimberlites

Zurevinski, Shannon 11 1900 (has links)
Recent discoveries of kimberlites in North America have revealed that different processes are involved in the generation of kimberlite magma. A multi-disciplinary approach combining mineralogical, petrological, geochemical, and geochronological methods is used to classify the kimberlites, investigate possible sources of magma and evaluate current tectonic models proposed for the generation of kimberlite magma. The two main study areas are 1) the diamond-poor Churchill kimberlite field (Nunavut); and 2) the highly diamondiferous Lac de Gras kimberlite field (NWT). The Attawapiskat kimberlite field, the Kirkland Lake kimberlite field and the Timiskaming kimberlite field (Ontario) are also included in this study. The 55-56 Ma Diavik kimberlite cluster (NWT) have been classified as resedimented volcaniclastic > olivine-bearing volcaniclastic > mud-bearing volcaniclastic > macrocrystic oxide-bearing hypabyssal kimberlite > calcite oxide hypabyssal kimberlite > tuffisitic kimberlite breccia. Geochemical features of Diavik kimberlites include: 1) LREE enrichment, 2) large intra-field range in REE content, and 3) highly diamondiferous kimberlites at Diavik with primitive geochemical signatures. The Churchill kimberlites are classified as sparsely macrocrystic, oxide-rich calcite evolved hypabyssal kimberlite and macrocrystic oxide-rich monticellite phlogopite hypabyssal kimberlite. Electron microprobe analyses of olivine, phlogopite, spinel and perovskite support this petrographical classification. Twenty-seven precise U-Pb perovskite and Rb-Sr phlogopite emplacement ages indicate that magmatism spans ~45 million years (225-170 Ma). The crystallization ages and the Sr and Nd isotopic compositions of groundmass perovskite from a well-established, SE-trending Triassic-Jurassic corridor of kimberlite magmatism in Eastern North America (ENA) were determined to investigate the origin of this magmatism. The Sr isotopic results indicate that the Churchill (0.7032-0.7036) and Attawapiskat kimberlites (0.7049-0.7042) have unique isotopic compositions, while Kirkland Lake/Timiskaming perovskite have a larger range of 87Sr/86Sr ratios. This implies the derivation of kimberlite magma from two distinct sources in the mantle, a depleted MORB mantle source and a kimberlite magma with a Bulk Silicate Earth signature. The pattern of increasing 87Sr/86Srinitial with younging of kimberlite magmatism along the ~2000 km corridor of continuous Triassic/Jurassic magmatism could be explained from either a single or multiple hotspot track(s), responsible for the addition of heat required to generate small volume mantle melting of a kimberlite source.
3

Diavik Waste Rock Project: Geochemical and mineralogical investigations of waste-rock weathering

Hannam, Stacey January 2012 (has links)
The oxidation of sulfide minerals in mine waste rock has the potential to generate acidity and contribute sulfate, metals and other trace constituents to drainage. The rate and extent to which this process occurs are dependent upon climactic conditions and the overall hydrologic, geochemical and physical properties of the waste rock. A laboratory and field-based study is currently being conducted at the Diavik Diamond Mine in the Northwest Territories, Canada, which is investigating the evolution of waste rock exposed to subaerial conditions in the continuous permafrost region. Over the course of the mine life, Diavik is expected to generate a stock pile up to 120 Mt of low-sulfide waste-rock composed primarily of granite and granite pegmatite with smaller amounts of biotite schist which occurs as xenoliths, and trace contributions from diabase dykes. Waste rock is segregated based on sulfur content into Type I (< 0.04 wt % S), Type II (0.04-0.08 wt % S) and Type III (> 0.08 wt % S) rock. The Diavik Waste Rock Research Project includes four 2 m by 2 m lysimeter experiments, two each constructed with Type I and Type III waste rock. Also constructed were two well-instrumented, 15 m high test scale waste-rock piles, one composed of Type I and one composed of Type III uncovered waste rock, and one covered test pile based on a reclamation concept which consists of a Type III waste rock core, a 1.5 m glacial till layer, and a 3 m layer of Type I waste rock. In addition, instrumentation was installed in four locations of the operational waste-rock stockpile. The geochemical differences between the Type I and Type III lysimeters and test piles is discussed to compare the non-acid generating Type I waste rock with the potentially acid-generating Type III. The effluent from the Covered test pile retained the character of the Type III waste-rock core over the course of observation producing slightly acidic drainage, possibly due to a zone of unfrozen till on the crest as a result of heat trace within the test pile. Observations from the geochemistry of the Type III waste rock will also be compared to mineralogical analysis from Type III samples collected during installation of instruments in the full scale waste-rock stockpile. Due to the low concentration of sulfide minerals, advanced techniques such as SEM and synchrotron-based analyses were employed for in-depth characterization of initial sulfide-oxidation products. SEM images and elemental mapping reveal development of reaction rims on many pyrrhotite grains, but lower instances of weathering of pyrite. Distinct zonation of weathering trends between depths within the stockpile was also absent. These observations indicate that the waste rock is in the early weathering stages may not yet be affected by the formation of permafrost. These observations act as a baseline for future studies. Correlations between the mineralogical and geochemical analyses, in addition to future monitoring and continuation of these studies, will assist in understanding the evolution of waste rock stored in a permafrost environment.
4

Diavik Waste Rock Project: Geochemical and mineralogical investigations of waste-rock weathering

Hannam, Stacey January 2012 (has links)
The oxidation of sulfide minerals in mine waste rock has the potential to generate acidity and contribute sulfate, metals and other trace constituents to drainage. The rate and extent to which this process occurs are dependent upon climactic conditions and the overall hydrologic, geochemical and physical properties of the waste rock. A laboratory and field-based study is currently being conducted at the Diavik Diamond Mine in the Northwest Territories, Canada, which is investigating the evolution of waste rock exposed to subaerial conditions in the continuous permafrost region. Over the course of the mine life, Diavik is expected to generate a stock pile up to 120 Mt of low-sulfide waste-rock composed primarily of granite and granite pegmatite with smaller amounts of biotite schist which occurs as xenoliths, and trace contributions from diabase dykes. Waste rock is segregated based on sulfur content into Type I (< 0.04 wt % S), Type II (0.04-0.08 wt % S) and Type III (> 0.08 wt % S) rock. The Diavik Waste Rock Research Project includes four 2 m by 2 m lysimeter experiments, two each constructed with Type I and Type III waste rock. Also constructed were two well-instrumented, 15 m high test scale waste-rock piles, one composed of Type I and one composed of Type III uncovered waste rock, and one covered test pile based on a reclamation concept which consists of a Type III waste rock core, a 1.5 m glacial till layer, and a 3 m layer of Type I waste rock. In addition, instrumentation was installed in four locations of the operational waste-rock stockpile. The geochemical differences between the Type I and Type III lysimeters and test piles is discussed to compare the non-acid generating Type I waste rock with the potentially acid-generating Type III. The effluent from the Covered test pile retained the character of the Type III waste-rock core over the course of observation producing slightly acidic drainage, possibly due to a zone of unfrozen till on the crest as a result of heat trace within the test pile. Observations from the geochemistry of the Type III waste rock will also be compared to mineralogical analysis from Type III samples collected during installation of instruments in the full scale waste-rock stockpile. Due to the low concentration of sulfide minerals, advanced techniques such as SEM and synchrotron-based analyses were employed for in-depth characterization of initial sulfide-oxidation products. SEM images and elemental mapping reveal development of reaction rims on many pyrrhotite grains, but lower instances of weathering of pyrite. Distinct zonation of weathering trends between depths within the stockpile was also absent. These observations indicate that the waste rock is in the early weathering stages may not yet be affected by the formation of permafrost. These observations act as a baseline for future studies. Correlations between the mineralogical and geochemical analyses, in addition to future monitoring and continuation of these studies, will assist in understanding the evolution of waste rock stored in a permafrost environment.
5

Undermining Emissions

Vice President Research, Office of the January 2009 (has links)
Once a source of environmental concern, mine tailings could now contribute to the fight against climate change. Greg Dipple and team are discovering how mines can potentially ofset their own emissions.

Page generated in 0.0273 seconds