• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Optimizing Die-stacked DRAM Caches

El Nacouzi, Michel 22 November 2013 (has links)
Die-stacking is a new technology that allows multiple integrated circuits to be stacked on top of each other while connected with a high-bandwidth and high-speed interconnect. In particular, die-stacking can be useful in boosting the effective bandwidth and speed of DRAM systems. Die-stacked DRAM caches have recently emerged as one of the top applications of die-stacking. They provide higher capacity than their SRAM counterparts and are faster than offchip DRAMs. In addition, DRAM caches can provide almost eight times the bandwidth of off-chip DRAMs. They, however, come with their own challenges. Since they are only twice as fast as main memory, they considerably increase latency for misses and incur significant energy overhead for remote lookups in snoop-based multi-socket systems. In this thesis, we present a Dual-Grain Filter for avoiding unnecessary accesses to the DRAM cache at reduced hardware cost and we compare it to recent works on die-stacked DRAM caches.
2

On Optimizing Die-stacked DRAM Caches

El Nacouzi, Michel 22 November 2013 (has links)
Die-stacking is a new technology that allows multiple integrated circuits to be stacked on top of each other while connected with a high-bandwidth and high-speed interconnect. In particular, die-stacking can be useful in boosting the effective bandwidth and speed of DRAM systems. Die-stacked DRAM caches have recently emerged as one of the top applications of die-stacking. They provide higher capacity than their SRAM counterparts and are faster than offchip DRAMs. In addition, DRAM caches can provide almost eight times the bandwidth of off-chip DRAMs. They, however, come with their own challenges. Since they are only twice as fast as main memory, they considerably increase latency for misses and incur significant energy overhead for remote lookups in snoop-based multi-socket systems. In this thesis, we present a Dual-Grain Filter for avoiding unnecessary accesses to the DRAM cache at reduced hardware cost and we compare it to recent works on die-stacked DRAM caches.

Page generated in 0.0585 seconds