• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal characterization technique for thin dielectric films

Indermuehle, Scott W. 14 April 1998 (has links)
A phase sensitive measurement technique that permits the simultaneous determination of two independent thermal properties of thin dielectric films is presented. Applying the technique results in a film's thermal diffusivity and effusivity, from which the thermal conductivity and specific heat can be calculated. The technique involves measuring a specimen's front surface temperature response to a periodic heating signal. The heating signal is produced by passing current through a thin layer of nichrome that is deposited on the specimen's surface, and the temperature response is measured with a HgCdTe infrared detector operating at 77 K. The signal that is produced by the infrared detector is first conditioned, and then sent to a lock-in amplifier. The lock-in is used to extract the phase shift present between the temperature and heating signal through a frequency range of 500 Hz-20 kHz. The corresponding phase data is fit to an analytical model using thermal diffusivity and effusivity as fitting parameters. The method has been applied effectively to 1.72 ��m films of Si0��� that have been thermally grown on a silicon substrate. Thermal properties have been obtained through a temperature range of 25��C-300��C. One unanticipated outcome stemming from analysis of the experimental data is the ability to extract both the thermal conductivity and specific heat of a thin film from phase information alone, with no need for signal magnitude. This improves the overall utility of the measurement process and provides a 'clean', direct path with fewer assumptions between data and final results. The thermal properties determined so far with this method are consistent with past work on Si0��� films. / Graduation date: 1998

Page generated in 0.1249 seconds