• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing and Tuning the Properties of Materials by Quantum Mechanical Calculations

Souza de Almeida, Jailton January 2006 (has links)
<p>In many materials, changes in chemical composition, pressure or temperature can induce metal to insulator transitions. It is recently observed in yttrium hydride, for example, changes from a shiny mirror (YH<sub>2</sub>) to a transparent window (YH<sub>3</sub>), which has important technological application in optical devices. We have tuned the above transition by choosing <i>pressure</i> instead of composition. Our predicted finding is confirmed by recent experiments and opens a new way to design optical switches.</p><p>The unique role that gold plays in society is to a large extent related to the fact that it is the most <i>noble</i> of all metals.We have studied the noble nature of gold by choosing <i>pressure</i> as tool. Our prediction shows that gold transforms from a face centered cubic to an hexagonal closed packed phase above 200 GPa whereas platinum, another noble metal, does not show any phase transition up to 500 GPa. This prediction has also been confirmed by experiments suggesting that platinum is more noble than gold.</p><p>The growing concern about climate change and fossil fuel availability, the direct conversion of solar irradiation into electricity appears to be an ideal alternative to conventional energy sources. Power generation by solar cells is a direct method of solar energy conversion. We report a new cubic phase of TiO<sub>2</sub> which can be stabilized at ambient conditions. This phase has an absorption three or four orders of magnitude larger than the conventional state-of-the-art solar cell based on anatase TiO<sub>2</sub>. Therefore, we are introducing a well established material with a new structure for future generation solar cells. The same effect is also observed in cubic SnO<sub>2</sub>.</p><p>Electronic and optical properties of other materials such as Be<sub>x</sub>Zn<sub>1-x</sub>Te, RuO<sub>2</sub> and IrO<sub>2</sub> are also studied in present thesis. In particular, for Be<sub>x</sub>Zn<sub>1-x</sub>Te, we have used composition as a tool to tune the optical properties.</p>
2

Designing and Tuning the Properties of Materials by Quantum Mechanical Calculations

Souza de Almeida, Jailton January 2006 (has links)
In many materials, changes in chemical composition, pressure or temperature can induce metal to insulator transitions. It is recently observed in yttrium hydride, for example, changes from a shiny mirror (YH2) to a transparent window (YH3), which has important technological application in optical devices. We have tuned the above transition by choosing pressure instead of composition. Our predicted finding is confirmed by recent experiments and opens a new way to design optical switches. The unique role that gold plays in society is to a large extent related to the fact that it is the most noble of all metals.We have studied the noble nature of gold by choosing pressure as tool. Our prediction shows that gold transforms from a face centered cubic to an hexagonal closed packed phase above 200 GPa whereas platinum, another noble metal, does not show any phase transition up to 500 GPa. This prediction has also been confirmed by experiments suggesting that platinum is more noble than gold. The growing concern about climate change and fossil fuel availability, the direct conversion of solar irradiation into electricity appears to be an ideal alternative to conventional energy sources. Power generation by solar cells is a direct method of solar energy conversion. We report a new cubic phase of TiO2 which can be stabilized at ambient conditions. This phase has an absorption three or four orders of magnitude larger than the conventional state-of-the-art solar cell based on anatase TiO2. Therefore, we are introducing a well established material with a new structure for future generation solar cells. The same effect is also observed in cubic SnO2. Electronic and optical properties of other materials such as BexZn1-xTe, RuO2 and IrO2 are also studied in present thesis. In particular, for BexZn1-xTe, we have used composition as a tool to tune the optical properties.
3

Optical properties of annealed hydrogenated amorphous silicon nitride (a-SiNx:H) thin films for photovoltaic application

Jacobs, Sulaiman January 2013 (has links)
Magister Scientiae - MSc / Technological advancement has created a market for large area electronics such as solar cells and thin film transistors (TFT’s). Such devices now play an important role in modern society. Various types of conducting, semiconducting and insulating thin films of the order of hundreds, or even tens of nanometres are combined in strata to form stacks to create interactions and phenomena that can be exploited and employed in these devices for the benefit of mankind. One such is for the generation of energy via photovoltaic devices that use thin film technology; these are known as second and third generation solar cells. Silicon and its alloys such as silicon germanium (SiGex), silicon oxide (SiOx), silicon carbide (SiCx) and silicon nitride (SiNx) play an important role in these devices due to the fact that each material in its different structures, whether amorphous, micro or nano-crystalline or completely crystalline, has its own range of unique optical, mechanical and electrical properties. These structures and their material properties can thus exert a huge influence over the overall device performance. viii Chemical vapour deposition (CVD) techniques are most widely used in industry to obtain thin films of silicon and silicon alloys. Source gases are decomposed by the external provision of energy thereby allowing for the growth of a thin solid film on a substrate. In this study a variant of CVD, namely Hot Wire Chemical Vapour Deposition (HWCVD) will be used to deposit thin films of silicon nitride by the decomposition of silane (SiH4), hydrogen (H2) and ammonia (NH3) on a hot tantalum filament (~1600 C). Hydrogenated amorphous silicon nitride (a-SiNx:H) has great potential for application in optoelectronic devices. In commercial solar cell production its potential for use as anti-reflection coatings are due to its intermediate refractive index combined with low light absorption. An additional benefit is the passivation of interface and crystal defects due to the bonded hydrogen. This can lead to better photon conversion efficiency. Its optical properties including optical band gap, Urbach tail, and wavelength-dependent optical constants such as absorption coefficient and refractive index are crucial for the design and application in the relevant optoelectronic device. The final firing step in the production of micro-crystalline silicon solar cells, allows hydrogen to effuse into the solar cell from the a-SiNx:H, and drives bulk passivation of the grain boundaries. We therefore propose the exploration of annealing effects on the thin film structure. The study undertakes a comparison of optical and bonding structure of the as deposited thin film compared to that of the annealed thin film which would have undergone changes due to high temperature annealing under vacuum. However, it is difficult to simultaneously obtain all of these important ix optical parameters for a-SiNx:H thin films. Ultraviolet visible (UV-vis) spectroscopy will be the method of choice to investigate the optical properties. Infrared (IR) spectroscopy is a source of useful information on the microstructure of the material. In particular, the local atomic bonding configurations involving Si, N, and H atoms in a-SiNx:H films can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). Therefore, this study will attempt to establish a relationship between film microstructure of a-SiNx:H thin films and their macroscopic optical properties.
4

Macroscopic and Microscopic surface features of Hydrogenated silicon thin films

Pepenene, Refuoe Donald January 2018 (has links)
Magister Scientiae - MSc (Physics) / An increasing energy demand and growing environmental concerns regarding the use of fossil fuels in South Africa has led to the challenge to explore cheap, alternative sources of energy. The generation of electricity from Photovoltaic (PV) devices such as solar cells is currently seen as a viable alternative source of clean energy. As such, crystalline, amorphous and nanocrystalline silicon thin films are expected to play increasingly important roles as economically viable materials for PV development. Despite the growing interest shown in these materials, challenges such as the partial understanding of standardized measurement protocols, and the relationship between the structure and optoelectronic properties still need to be overcome.

Page generated in 0.0685 seconds