Spelling suggestions: "subject:"dielectrophoretic force"" "subject:"dielectrophorestic force""
1 |
Implementation of Low Cost, High-Throughput and High Sensitive Biomarker Detection Technique in Serum/Plasma Samples by Integrating Dielectrophoresis and Fluorescence Based PlatformLogeeshan, Velmanickam January 2019 (has links)
Low-cost, highly-sensitivity, and minimally invasive tests for the detection and monitoring of life-threatening cancers can reduce the worldwide disease burden. The disease diagnosis community is constantly working to improve the detection capabilities of the deadly cancers (e.g.: pancreatic and lung) at their early stages. Still there were many cancers cannot be detected at their early stages due to lack of early diagnosis techniques. One of the reason being, many cancers that occur in the body release minute amounts of biomarker molecules during the initial stages (e.g.: DNA, RNA, miRNA and antigens) in the body fluids such as blood and serum. Since the traditional bio-sensing techniques have reached their maximum capacity in terms of critical performance parameters (sensitivity, detection time, reproducibility and limit of detection) there is an urgent need for innovative approaches that can fill this gap.
To address this unmet need, here we report on developing a novel bio-sensing technique for detecting and quantifying biomolecules from the patients’ plasma/serum samples at point-of-care settings. Here we have investigated the novel interactions between biomolecules and externally applied fields to effectively manipulate and specifically concentrate them at a certain detection spots near electrodes on the detection device. Then the near-field interactions between the fluorophores and the free electrons on metal surfaces were successfully integrated with the externally applied low frequency (<10MHz) electric field, to achieve maximum florescence enhancement, that produces the detection limit of target-biomolecules in the rage of femto molars (fM). Moreover, the externally applied electric potential produces dielectrophoretic and thermophoretic force on the biomolecules, together with these forces we were able to separate the fluorophore-labelled rare target-biomolecules from the others in a sample.
The novel integrated technique is tested and proved to be superior to the current gold standards (qRT-PCR and ELISA) for target-biomolecules detection in critical performance parameters. Finally the technique was used to analyze healthy and pancreatic cancer patients’ samples and further it has been proved that we can differentiate the healthy individuals and cancer patients. In addition, this technique is being applied to the other diseases such as obesity, opioid addiction and other types of cancers.
|
2 |
Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in octupolar cell trapsRosales, C., Lim, K. M., Khoo, Boo Cheong 01 1900 (has links)
This work presents detailed numerical calculations of the dielectrophoretic force in octupolar traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using an indirect implementation of the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that the full MST calculation is only required in the study of non-spherical particles. / Singapore-MIT Alliance (SMA)
|
3 |
Parametric studies of field-directed nanowire chaining for transparent electrodesAlsaif, Jehad 25 August 2017 (has links)
Transparent electrodes (TEs) have become important components of displays, touch
screens, and solar photovoltaic (PV) energy conversion devices. As electrodes, they
must be electrically conductive while being transparent. Transparent materials are
normally poor conductors and materials with high electrical conductivity, such as
metals, are typically not transparent. From the few candidate materials, indium
tin oxide (ITO) is currently the best available, but indium is an expensive material
and ITO cost has risen with increasing demand. Therefore, alternative materials
or methods are sought to encourage production needs of applications and help in
reducing their price. This thesis presents and discusses results of experimental work
for a method, field-directed chaining, to produce a TE device which is nanowire-based,
with a figure of merit FoM= 2.39 x10E-4
Ohm E-1, comparable to ITO but with potential
for far lower cost.
Using electric field-directed chaining, multiple parallel long chains of metal nanowires
are assembled on inexpensive transparent materials such as glass by field directed
nanowire chaining, using methods first demonstrated in our laboratory.
In this work, we have improved the fraction of functional chains, by tuning the
field/voltage, a key step in increasing the FoM and lowering the cost. The effect
of operating parameters on TE optical and electrical properties has been studied and identified as well. From experiments with twenty seven substrates, each with
a range of electric field and nanowire concentration, the highest light transmission
achieved is 78% and the lowest sheet resistance achieved is 100 Ohm/sq. Among all
the operating parameters, the electric field has the most significant influence on the
fraction of nanowire chains that are functional. In the operating range of electric field strength available to us, we observed a monotonic increase in the fraction of
functional nanowire chains. We found a counter-intuitive change in TE properties in
a sub-range of nanowire concentration, associated with a change in the structure of
chained patterns. / Graduate
|
Page generated in 0.0678 seconds