• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FruitPAL: An IoT-Enabled Framework for Automatic Monitoring of Fruit Consumption in Smart Healthcare

Alkinani, Abdulrahman Ibrahim M. 12 1900 (has links)
This research proposes FruitPAL and FruitPAL 2.0. They are full automatic devices that can detect fruit consumption to reduce the risk of disease. Allergies to fruits can seriously impair the immune system. A novel device (FruitPAL) detecting fruit that can cause allergies is proposed in this thesis. The device can detect fifteen types of fruit and alert the caregiver when an allergic reaction may have happened. The YOLOv8 model is employed to enhance accuracy and response time in detecting dangers. The notification will be transmitted to the mobile device through the cloud, as it is a commonly utilized medium. The proposed device can detect the fruit with an overall precision of 86%. FruitPAL 2.0 is envisioned as a device that encourages people to consume fruit. Fruits contain a variety of essential nutrients that contribute to the general health of the human body. FruitPAL 2.0 is capable of analyzing the consumed fruit and then determining its nutritional value. FruitPAL 2.0 has been trained on YOLOv5 V6.0. FruitPAL 2.0 has an overall precision of 90% in detecting the fruit. The purpose of this study is to encourage fruit consumption unless it causes illness. Even though fruit plays an important role in people's health, it might cause dangers. The proposed work can not only alert people to fruit that can cause allergies, but also it encourages people to consume fruit that is beneficial for their health.
2

Pervasive Quantied-Self using Multiple Sensors

January 2019 (has links)
abstract: The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for ensuring the well-being of patients suffering from chronic diseases as well as for providing a low cost means for maintaining the health for everyone else. Automatic dietary monitoring consists of: a) Determining the type and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency, and speed of eating. Although there are some existing techniques towards these ends, they suffer from issues of low accuracy and low adherence. To overcome these issues, multiple sensors were utilized because the availability of affordable sensors that can capture the different aspect information has the potential for increasing the available knowledge for Quantified-Self. For a), I envision an intelligent dietary monitoring system that automatically identifies food items by using the knowledge obtained from visible spectrum camera and infrared spectrum camera. This system is able to outperform the state-of-the-art systems for cooked food recognition by 25% while also minimizing user intervention. For b), I propose a novel methodology, IDEA that performs accurate eating action identification within eating episodes with an average F1-score of 0.92. This is an improvement of 0.11 for precision and 0.15 for recall for the worst-case users as compared to the state-of-the-art. IDEA uses only a single wrist-band which includes four sensors and provides feedback on eating speed every 2 minutes without obtaining any manual input from the user. / Dissertation/Thesis / Doctoral Dissertation Computer Engineering 2019

Page generated in 0.0969 seconds