Spelling suggestions: "subject:"difeomorfismo parcialmente hiperbólico"" "subject:"difeomorfismos parcialmente hiperbólico""
1 |
Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 / Maximal entropy measures for diffeomorphisms with compact center foliation on T3Rocha, Joás Elias dos Santos 02 March 2018 (has links)
Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M). / This work is about maximal entropy measures for certain diffeomorphisms on nilmanifolds. Consider a partially hyperbolic diffeomorphism f on T3 , C2 , dinamically coherent with compact center foliation which is a circle bundle. Assume that the map induced by f on the space of center leaves is a transitive Anosov homeomorphism. We show that the set of hyperbolic ergodic maximal entropy measures of f is countable. Using the invariance principle, we show that if the first return map to some periodic leaf has irrational rotation number then f has at most two ergodic maximal entropy measures and, in this case, if f has only one maximal entropy measure then f is a rotation extension. If the first return map to some periodic leaf is Morse-Smale then either there exists some periodic su-torus or an upper bound for the number of ergodic maximal entropy measure depending on the number of the attractors of the dynamics in this leaf. Moreover, we study the topology of basin of ergodic maximal entropy measures of another set of special diffeomorphisms that are generic in the space of absolutely partially hyperbolic systems and denoted by SPH1(M).
|
2 |
Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliationsCosta, José Santana Campos 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
|
3 |
Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 / Maximal entropy measures for diffeomorphisms with compact center foliation on T3Joás Elias dos Santos Rocha 02 March 2018 (has links)
Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M). / This work is about maximal entropy measures for certain diffeomorphisms on nilmanifolds. Consider a partially hyperbolic diffeomorphism f on T3 , C2 , dinamically coherent with compact center foliation which is a circle bundle. Assume that the map induced by f on the space of center leaves is a transitive Anosov homeomorphism. We show that the set of hyperbolic ergodic maximal entropy measures of f is countable. Using the invariance principle, we show that if the first return map to some periodic leaf has irrational rotation number then f has at most two ergodic maximal entropy measures and, in this case, if f has only one maximal entropy measure then f is a rotation extension. If the first return map to some periodic leaf is Morse-Smale then either there exists some periodic su-torus or an upper bound for the number of ergodic maximal entropy measure depending on the number of the attractors of the dynamics in this leaf. Moreover, we study the topology of basin of ergodic maximal entropy measures of another set of special diffeomorphisms that are generic in the space of absolutely partially hyperbolic systems and denoted by SPH1(M).
|
4 |
Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliationsJosé Santana Campos Costa 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
|
Page generated in 0.088 seconds