• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un nouvel algoritme pour la simulation DNS et LES des ecoulements cavitants / A novel algorithm for DNS and LES simulations of cavitating flows

Znidarcic, Anton 16 December 2016 (has links)
Le couplage diphasique-turbulence est une propriété clé des écoulements cavitants, qui est un frein important à l’amélioration des modèles de cavitation et de turbulence. Réaliser des simulations directes (DNS) est le moyen proposé ici pour s’affranchir du modèle de turbulence et obtenir des informations nouvelles sur les phénomènes mis en jeu. Ce type de simulation est exigeant sur le plan numérique, et requiert le développement d’un solveur spécifique intégrant les spécificités des modèles de cavitation. Cela inclue notamment des schémas de discrétisation d’ordre élevé, un solveur direct, et une résolution multi-domaines associée à une parrallélisation efficace. Une discrétisation par différences compactes finies s’avère être le meilleur choix. La contrainte de rapidité et de parrallélisation impose un algorithme où les systèmes résoudre n’impliquent des multiplications des variables implicites que par des coefficients invariants au cours du calcul. Un nouvel algorithme réunissant ces critères a été développé durant cette thèse, à partir de la combinaison de la méthode de Concus & Golub et d’une méthode de projection, qui permet de résoudre les équations associées à la modélisation homogène de la cavitation. Une nouvelle approche de vérification de ce nouvel algorithme est également proposée et mise en œuvre sur la base de la méthode des solutions manufacturées (MMS). / Cavitation-turbulence interactions are problematic aspect of cavitating flows which imposes limitations in development of better cavitation and turbulence models. DNS simulations with homogeneous mixture approach are proposed to overcome this and offer more insight into the phenomena. As DNS simulations are highly demanding and a variety of cavitation models exists, a tool devoted specifically to them is needed. Such tools usually demand application of highly accurate discretization schemes, direct solvers and multi domain methods enabling good scaling of the codes. As typical cavitating flow geometries impose limits on suitable discretization methods, compact finite differences offer the most appropriate discretization tool. The need for fast solvers and good code scalability leads to request for an algorithm, capable of stable and accurate cavitating flow simulations where solved systems feature multiplication of implicitly treated variables only by constant coefficients. A novel algorithm with such ability was developed in the scope of this work using Concus and Golub method introduced into projection methods, through which the governing equations for homogeneous mixture modeling of cavitating flows can be resolved. Work also proposes an effective and new approach for verification of the new and existing algorithms on the basis of Method of Manufactured Solutions.
2

Simulations numériques d’écoulements incompressibles interagissant avec un corps déformable : application à la nage des poissons / Numerical simulation of incompressible flows interacting with forced deformable bodies : Application to fish swimming

Ghaffari Dehkharghani, Seyed Amin 15 December 2014 (has links)
Une méthode numérique précise et efficace est proposée pour la simulation de corps déformables interagissant avec un écoulement incompressible. Les équations de Navier-Stokes, considérées dans leur formulation vorticité fonction de courant, sont discrétisées temporellement et spatialement à l'aide respectivement d'un schéma d'ordre 4 de Runge-Kutta et par des différences finies compactes. Grâce à l'utilisation d'un maillage uniforme, nous proposons un nouveau solveur direct au quatrième ordre pour l'équation de Poisson, permettant de garantir l'incompressibilité au zéro machine sur une grille optimale. L'introduction d'un corps déformable dans l'écoulement de fluide est réalisée au moyen d'une méthode de pénalisation de volume. La déformation du corps est imposée par l'utilisation d'un maillage lagrangien structuré mobile qui interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi de contrôle efficace de la courbure d'un poisson anguilliforme nageant vers une cible prescrite est proposée. La méthode numérique développée prouve son efficacité et précision tant dans le cas de la nage du poisson mais aussi plus d'un grand nombre de problèmes d'interactions fluide-structure. / We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.

Page generated in 0.0754 seconds