• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plant and bacterial functions required for morphological bacteroid differentiation in the Aeschynomene-Bradyrhizobium model / Fonctions des plantes et bacteriennes nécessaires à la différenciation morphologique des bactéroïdes dans le modèle Aeschynomene-Bradyrhizobium

Nguyen, Van Phuong 20 October 2016 (has links)
Les légumineuses sont capables de développer des organes symbiotiques, les nodules, qui hébergent des bactéries du sol appelées rhizobia. Au sein des nodules les rhizobia intracellulaires se différencient en bactéroïdes capables de réduire l'azote atmosphérique en ammonium au bénéfice de la plante. En contrepartie, la plante alimente la bactérie en sources de carbone. Des études récentes sur le modèle symbiotique Medicago/Sinorhizobium ont montré dans les nodules la forte présence d'une grande diversité de peptides appelés NCR qui sont similaires aux peptides antimicrobiens (AMP) impliqués dans l'immunité innée. Ces NCR sont responsables du maintien de l'homéostasie entre les cellules hôtes et la forte population bactérienne qu'elles contiennent. Bien que certains NCR sont de vrais AMP, capable de tuer des bactéries in vitro, dans les nodules ils induisent plutôt une différenciation terminale caractérisée par une élongation cellulaire, une amplification du génome, une perméabilité membranaire et une perte des capacités de division de la bactérie. Néanmoins le mode d'action des NCR reste à élucider. Au cours de ma thèse j'ai participé à la caractérisation des processus de différenciation dans le modèle Aeschynomene, une légumineuse tropicale, Bradyrhizobium.Dans un premier temps, une nouvelle classe de NCR a été identifiée chez différentes espèces d'Aeschynomene. Ces NCR sont responsables de la différenciation des Bradyrhizobium via un processus similaire à celui décrit chez Medicago. Ces résultats suggèrent une évolution convergente des processus de différenciation chez les Dalbergioïdes (Aeschynomene) et le clade des IRLC (Medicago).Ensuite, pour identifier les fonctions bactériennes requises lors de la différenciation, j'ai criblé 53 mutants Tn5 d'Aeschynomene indica fix- . Huit gènes bactériens dont la mutation inhibe ou affecte le processus de différenciation ont été identifiés. Parmi eux, je me suis focalisé sur la DD-CPase une enzyme de modification du peptidoglycane et sur 2 gènes impliqués dans l'homéostasie du phosphate.La caractérisation du gène DD-CPase1 a permis de démontrer que le remodelage du peptidoglycane est requis pour une différenciation correcte des bactéroïdes chez les plantes hôtes qui produisent des NCR, en général, et chez Aeschynomene en particulier. Ces résultats suggèrent une interaction possible entre DD-CPase1 et des NCR conduisant à l'endoréplication des bactéroïdes.Enfin, j'ai étudié les propriétés physiologiques et symbiotiques des mutants pstC et pstB. Les mutants Tn5 des gènes pstC et pstB de la souche ORS285 de Bradyrhizobium sont sévèrement affectés par la carence en phosphate en culture pure et leurs propriétés symbiotiques (différenciation, réduction de l'azote) sont fortement réduites. Des analyses fonctionnelles plus approfondies de l'opéron Pst devraient permettre une meilleure compréhension du lien entre l'homéostasie du phosphate et l'efficience symbiotique dans l'interaction Aeschynomene-Bradyrhizobium.Mes travaux ont permis d'élargir nos connaissances sur l'évolution de la symbiose en montrant que le modus operandi impliquant des peptides dérivés de l'immunité innée utilisée par certaines légumineuses pour maintenir leur population bactérienne intracellulaire sous contrôle est plus répandue et ancienne qu'on ne le pensait et a été utilisée par l'évolution à plusieurs reprises. De plus différentes cibles bactériennes pouvant participer au processus de différenciation ont également été identifiées. / The legume species are able to form symbiotic organs, the nodules, that house soil bacteria called rhizobia. Within these nodules intracellular rhizobia differentiate into bacteroids, which are able to reduce atmospheric dinitrogen to ammonium for the benefit of the plants. In counterpart, the plants provide carbon sources to the bacteria. Recent studies on symbiotic model Medicago-Sinorhizobium showed that the nodules of M. truncatula produce a massive diversity of peptides called NCRs, which are similar to antimicrobial peptides (AMPs) of innate immune systems. These NCRs are responsible in maintaining the homeostasis between the host cells in the nodules and the large bacterial population they contain. Although many NCRs are genuine AMPs, which kill microbes in vitro, in nodule cells they do not kill the bacteria but induce them into the terminally differentiated bacteroids characterized by cell elongation, genome amplification, membrane permeability and loss of cell division capacity. However, the action mode of NCRs is still an open question. During my PhD thesis I focused on the identification of plant and bacterial functions required for bacteroid differentiation in the Aeschynomene-Bradyrhizobium model.Firstly, a new class of cysteine rich peptides (NCR-like) was identified in tropical aquatic legumes of the Aeschynomene genus, which belong to the Dalbergioid clade. These peptides govern terminal bacteroid differentiation of photosynthetic Bradyrhizobium spp. This mechanism is similar to the one previously described in Medicago suggesting that the endosymbiont differentiation in Dalbergioid and ILRC legumes is convergently evolved.Secondly, in order to identify the bacterial functions involved in bacteroid differentiation, I screened 53 fix- Tn5 mutants of the ORS278 strain on Aeschynomene indica. This screening allowed identify 8 bacterial genes, which inhibit or disorder the bacteroid differentiation. Among these identified genes, I focused on DD-CPase encoding a peptidoglycan-modifying enzyme and two genes pstC and pstB belonging to Pst-system.The characterization of DD-CPase gene demonstrated that the remodeling peptidoglycan enzyme, DD-CPase1, of Bradyrhizobium is required for normal bacteroid differentiation in host legumes that produce NCRs, in general, and in Aeschynomene spp., in particular. This prompts a possibility of direct interaction of DD-CPase1 with NCRs leading to endoreduplication of the bacteroids.Finally, I have investigated the physiological and symbiotic properties of different mutants of pstC and pstB genes. The Tn5 mutants of pstC and pstB genes of Bradyrhizobium sp. strain ORS278 severely affected symbiosis on A. indica and A. evenia. Further functional studies on pst-operon will provide deeper understanding the correlation between phosphate homeostasis and nitrogen fixation efficiency in Aeschynomene-Bradyrhizobium symbiosis.This study broadens our knowledge on the evolution of symbiosis by showing that the modus operandi involving peptides derived from innate immunity used by some legumes to keep their intracellular bacterial population under control is more widespread and ancient than previously thought and has been invented by evolution several times.

Page generated in 0.1288 seconds