Spelling suggestions: "subject:"difference algebra"" "subject:"deifference algebra""
1 |
Structural Reformulations in System IdentificationLyzell, Christian January 2012 (has links)
In system identification, the choice of model structure is important and it is sometimes desirable to use a flexible model structure that is able to approximate a wide range of systems. One such model structure is the Wiener class of systems, that is, systems where the input enters a linear time-invariant subsystem followed by a time-invariant nonlinearity. Given a sequence of input and output pairs, the system identification problem is often formulated as the minimization of the mean-square prediction error. Here, the prediction error has a nonlinear dependence on the parameters of the linear subsystem and the nonlinearity. Unfortunately, this formulation of the estimation problem is often nonconvex, with several local minima, and it is therefore difficult to guarantee that a local search algorithm will be able to find the global optimum. In the first part of this thesis, we consider the application of dimension reduction methods to the problem of estimating the impulse response of the linear part of a system in the Wiener class. For example, by applying the inverse regression approach to dimension reduction, the impulse response estimation problem can be cast as a principal components problem, where the reformulation is based on simple nonparametric estimates of certain conditional moments. The inverse regression approach can be shown to be consistent under restrictions on the distribution of the input signal provided that the true linear subsystem has a finite impulse response. Furthermore, a forward approach to dimension reduction is also considered, where the time-invariant nonlinearity is approximated by a local linear model. In this setting, the impulse response estimation problem can be posed as a rank-reduced linear least-squares problem and a convex relaxation can be derived. Thereafter, we consider the extension of the subspace identification approach to include linear time-invariant rational models. It turns out that only minor structural modifications are needed and already available implementations can be used. Furthermore, other a priori information regarding the structure of the system can incorporated, including a certain class of linear gray-box structures. The proposed extension is not restricted to the discrete-time case and can be used to estimate continuous-time models. The final topic in this thesis is the estimation of discrete-time models containing polynomial nonlinearities. In the continuous-time case, a constructive algorithm based on differential algebra has previously been used to prove that such model structures are globally identifiable if and only if they can be written as a linear regression model. Thus, if we are able to transform the nonlinear model structure into a linear regression model, the parameter estimation problem can be solved with standard methods. Motivated by the above and the fact that most system identification problems involve sampled data, a discrete-time version of the algorithm is developed. This algorithm is closely related to the continuous-time version and enables the handling of noise signals without differentiations.
|
2 |
Quelques applications de l'algébre différentielle et aux différences pour le télescopage créatifChen, Shaoshi 16 February 2011 (has links) (PDF)
Depuis les années 90, la méthode de création télescopique de Zeilberger a joué un rôle important dans la preuve automatique d'identités mettant en jeu des fonctions spéciales. L'objectif de long terme que nous attaquons dans ce travail est l'obtension d'algorithmes et d'implantations rapides pour l'intégration et la sommation définies dans le cadre de cette création télescopique. Nos contributions incluent de nouveaux algorithmes pratiques et des critères théoriques pour tester la terminaison d'algorithmes existants. Sur le plan pratique, nous nous focalisons sur la construction de télescopeurs minimaux pour les fonctions rationnelles en deux variables, laquelle a de nombreuses applications en lien avec les fonctions algébriques et les diagonales de séries génératrices rationnelles. En considérant cette classe d'entrées contraintes, nous parvenons à mâtiner la méthode générale de création télescopique avec réduction bien connue d'Hermite, issue de l'intégration symbolique. En outre, nous avons obtenu pour cette sous-classe quelques améliorations des algorithmes classiques d'Almkvist et Zeilberger. Nos résultats expérimentaux ont montré que les algorithmes à base de réduction d'Hermite battent tous les autres algorithmes connus, à la fois en ce qui concerne la complexité au pire et en ce qui concerne les mesures de temps sur nos implantations. Sur le plan théorique, notre premier résultat est motivé par la conjecture de Wilf et Zeilberger au sujet des fonctions hyperexponentielles-hypergéométriques holonomes. Nous présentons un théorème de structure pour les fonctions hyperexponentielles-hypergéométriques de plusieurs variables, indiquant qu'une telle fonction peut s'écrire comme le produit de fonctions usuelles. Ce théorème étend à la fois le théorème d'Ore et Sato pour les termes hypergéométriques en plusieurs variables et le résultat récent par Feng, Singer et Wu. Notre second résultat est relié au problème de l'existence de télescopeurs. Dans le cas discret à deux variables, Abramov a obtenu un critère qui indique quand un terme hypergéométrique a un télescopeur. Des résultats similaires ont été obtenus pour le $q$-décalage par Chen, Hou et Mu. Ces résultats sont fondamentaux pour la terminaison des algorithmes s'inspirant de celui de Zeilberger. Dans les autres cas mixtes continus/discrets, nous avons obtenu deux critères pour l'existence de télescopeurs pour des fonctions hyperexponentielles-hypergéométriques en deux variables. Nos critères s'appuient sur une représentation standard des fonctions hyperexponentielles-hypergéométriques en deux variables, sur sur deux décompositions additives.
|
3 |
Groebner-Shirshov bases in some noncommutative algebrasZhao, Xiangui 23 September 2014 (has links)
Groebner-Shirshov bases, introduced independently by Shirshov in 1962 and Buchberger in 1965, are powerful computational tools in mathematics, science, engineering, and computer science. This thesis focuses on the theories, algorithms, and applications of Groebner-Shirshov bases for two classes of noncommutative algebras: differential difference algebras and skew solvable polynomial rings.
This thesis consists of three manuscripts (Chapters 2--4), an introductory chapter (Chapter 1) and a concluding chapter (Chapter 5).
In Chapter 1, we introduce the background and the goals of the thesis.
In Chapter 2, we investigate the Gelfand-Kirillov dimension of differential difference algebras. We find lower and upper bounds of the Gelfand-Kirillov dimension of a differential difference algebra under some conditions. We also give examples to demonstrate that our bounds are sharp.
In Chapter 3, we generalize the Groebner-Shirshov basis theory to differential difference algebras with respect to any left admissible ordering and develop the Groebner-Shirshov basis theory of finitely generated free modules over differential difference algebras. By using the theory we develop, we present an algorithm to compute the Gelfand-Kirillov dimensions of finitely generated modules over differential difference algebras.
In Chapter 4, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Groebner-Shirshov bases in skew solvable polynomial rings over fields. Our algorithm can detect redundant reductions and therefore it is more efficient than the traditional Buchberger algorithm.
Finally, in Chapter 5, we summarize our results and propose possible future work.
|
Page generated in 0.0788 seconds