Spelling suggestions: "subject:"differencefrequency generation"" "subject:"differentfrequency generation""
1 |
Cavity Enhanced THz Generation in Nonlinear Crystals Pumped by Near-IR Fiber LasersPetersen, Eliot January 2012 (has links)
A coherent optical THz (1.5 THz, 200 µm) source was developed based on pulsed, near IR, fiber lasers, and frequency mixing in nonlinear crystals. The generated THz frequency is determined by the difference frequency of two high peak power pulsed fiber lasers at 1550 nm and 1538 nm. When incident to the crystal, the near IR lasers induce a polarization at their beat frequency which generates the THz radiation. The pulsed fiber lasers are single transverse mode, have high pulse energy and peak powers of 0.38 mJ and 128 kW respectively. They are transform limited at a few ns in duration with very good beam quality of M² ≈ 1.2. The pulse seed was created by modulating a constant laser beam with an electro-optic modulator. An arbitrary waveform generator was used to pre-shape these pulses to compensate for pulse distortion caused by pump gain depletion in the subsequent fiber amplifiers. Pre-amplifiers were constructed using commercial erbium doped silica fiber. Special, highly doped, large core, phosphate fiber was developed in-house to further amplify the pulses, while avoiding nonlinear scattering processes such as stimulated Brillouin scattering and stimulated Raman scattering. THz generation was achieved in both ZnGeP₂ and GaP which were chosen based on their low pump and THz absorption, as well as high nonlinear coefficient. Angle tuning was used to phase match all three optical frequencies in ZnGeP₂ thanks to its birefringence. Layers of GaP ~500 µm thick were pressed together alternately rotated 180° around the normal to quasi-phase match the pump and THz frequencies. To increase the efficiency of the THz generation an external optical cavity was used to enhance and recycle the IR pump pulses. The nonlinear crystal was placed inside the cavity and 151 times enhancement of THz power was observed.
|
2 |
Development and application of spectroscopic techniques in the mid-infraredWhittaker, Kimberley Elaine January 2014 (has links)
Applications of laser absorption spectroscopy for trace gas detection are many and diverse, ranging from the environmental and atmospheric to the medical and industrial. The aim of creating a spectrometer which combines high sensitivities and selectivities (in order to measure small amounts of absorbers or species that are only weakly absorbing, in a complex background matrix) with a wide spectral coverage (to allow broadband absorbers or multi-component samples to be studied) can be realised by implementing three separate concepts: the exploitation of the strong, fundamental transitions of the mid-infrared; the use of sensitive spectroscopic techniques; and the selection of a widely tunable laser source. In this thesis, these ideas are investigated individually and in combination in order to achieve such a goal. Laser spectroscopic techniques based on optical cavities are used to build a high resolution spectrometer covering a large spectral range capable of selectively detecting low levels of gaseous compounds of interest, especially those of medical or environmental significance. Work in both the near- and mid-infrared is presented, including much of the initial, developmental work which was conducted in the former region. The thesis begins with an overview of both narrowband and broadband near-infrared radiation sources, with a particular emphasis on commonly available diode lasers (DLs). A novel laser source, the digital supermode distributed Bragg reector (DS-DBR) laser, is introduced as a useful laser source for spectroscopy, combining the usual benefits of telecom DLs with a wide tunability (1563 – 1613 nm). The laser can be operated in an internal or external ramping mode, allowing the output wavelength to be scanned or stepped across a desired region. The observation of mode-hopping during the application of the scanning methodology is examined and rationalised. The ability of the DS-DBR laser to perform high resolution spectroscopy over its entire spectral coverage is demonstrated by recording spectra of carbon dioxide (CO<sub>2</sub>) over this range, covering transitions from two of the four Fermi resonance components of the 3ν<sub>1</sub> + ν<sub>3</sub> combination band. The results of conducting wavelength modulation spectroscopy on CO<sub>2</sub> are also reported. A system developed for performing cavity ring-down spectroscopy (CRDS), capable of the real-time retrieval of ring-down times (RDTs), is presented and discussed. The outcomes of initial tests performed with a conventional DL at 1557 nm, to study a calibrated mixture of CO<sub>2</sub> in air at various pressures, are given. In addition, the results of combining this system with the DS-DBR laser are discussed. The bandwidth of the DS-DBR laser was found to be larger than that of a standard DFB DL, resulting in the presence of noisy cavity modes. Despite this, the acquisition of reproducible RDTs is demonstrated, with single wavelength studies of an evacuated cavity at 1605.5 nm yielding a RDT of 24.54 ± 0.04 µs and Allan variance calculations signalling an attainable minimum detectable absorption coefficient, α<sub>min</sub>, of 2.8 x 10<sup>-10</sup> cm<sup>-1</sup> over 20 s. The ability to perform CRDS across the whole DSDBR laser wavelength range without the need for cavity re-alignment is illustrated, and studies conducted on CO<sub>2</sub> in air, calibrated mixtures and breath are reported. Investigations are also described into the accurate determination of the <sup>13</sup>C/<sup>12</sup>C ratio in exhaled CO<sub>2</sub> undertaken using CRDS and cavity enhanced absorption spectroscopy (CEAS) on CO<sub>2</sub> isotopologues, an approach which can be utilised as a diagnostic aid in determining Helicobacter pylori infection. The focus of the thesis then moves to the mid-infrared, to describe quasi phase matching difference frequency generation (QPM-DFG) and its use to generate laser light at 3 µm by optically mixing near-infrared DLs. The theory behind this non-linear optical interaction is outlined, and the construction of a free-space QPM-DFG system using periodically poled lithium niobate is detailed and characterised. This DL-based QPM-DFG arrangement has been coupled with the CRDS system developed to create a mid-infrared CRD spectrometer. The results of single wavelength studies indicate RDTs of ~ 6 µs and an achievable αmin of 2.9 x 10<sup>-9</sup> cm<sup>-1</sup> over 44 s for an evacuated cavity. Spectroscopic investigations carried out on methane (CH<sub>4</sub>), acetone and deuterium are documented; for the latter species, Dicke narrowing of the electric quadrupole ν(1←0) Q(2) transition at 2987.29 cm<sup>-1</sup> is observed and the integrated absorption cross-section for the same transition measured as 2.29 ± 0.03 x 10<sup>-27</sup> cm<sup>2</sup>cm<sup>-1</sup>molec<sup>-1</sup>. The results of modifications made to the system, namely the use of a more powerful Nd:YAG laser as the pump radiation source, as well as a faster detector combined with a variable amplifier, are presented; these include the observation of an improved optimal α<sub>min</sub> of 6.4 x 10<sup>-10</sup> cm<sup>-1</sup> over 151 s for an empty cavity. Finally, work utilising the DS-DBR laser as one of the near-infrared sources for the QPM-DFG set-up is presented. This configuration generates radiation covering a wide mid-infrared range (3130 – 3330 nm) and has been used to perform direct absorption and wavelength modulation spectroscopy on ro-vibrational transitions within the fundamental ν<sub>3</sub> (F<sub>2</sub>) band of CH<sub>4</sub>. The spectrum of methanethiol (CH<sub>3</sub>SH) over this region has also been investigated, with preliminary studies identifying a feature at 3040 cm<sup>-1</sup> as a potential indicator for monitoring this biomarker in breath. The results of coupling this mid-infrared radiation with an optical cavity to perform CEAS combined with phase sensitive detection are subsequently reported. Studies were conducted on calibrated CH<sub>4</sub> mixtures and ambient air to examine two transitions of the fundamental ν<sub>3</sub> (F<sub>2</sub>) band of CH<sub>4</sub> in order to characterise the system: effective path lengths of ~ 700 m and α<sub>min</sub> of 6.2 x 10<sup>-8</sup> cm<sup>-1</sup> over 8 s were found. The <sup>R</sup>Q<sub>4</sub> CH<sub>3</sub>SH absorption feature at 3040 cm<sup>-1</sup> was also further studied with this system using prepared samples of CH<sub>3</sub>SH in N<sub>2</sub> at different concentrations, yielding a CH<sub>3</sub>SH detection limit of 2.4 ppm at 19 Torr. The potential of such a cavity-based, DS-DBR sourced, QPM-DFG mid-infrared spectrometer for trace gas sensing having thus been demonstrated, possible improvements that could be implemented to increase the sensitivity of the system are then discussed.
|
3 |
Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPOMei, Jialin, Zhong, Kai, Wang, Maorong, Liu, Pengxiang, Xu, Degang, Wang, Yuye, Shi, Wei, Yao, Jianquan, Norwood, Robert A., Peyghambarian, Nasser 03 November 2016 (has links)
A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 mu m with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 mu m to 2.191 mu m with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 mu m) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 mu W and DFG conversion efficiency of 4.32x10(-7). The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 mu W and 5.86x10(-7) respectively. This provides a potential practical palm-top tunable THz sources for portable applications.
|
4 |
Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate CrystalSuizu, Koji, Kawase, Kodo, 川瀬, 晃道 03 1900 (has links)
No description available.
|
5 |
Tunable, Room Temperature THz Emitters Based on Nonlinear PhotonicsSinha, Raju 31 March 2017 (has links)
The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability.
We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1×105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and experimentally demonstrated an efficient polarization dependent plasmonic toroid switch operating at THz frequency.
In summary, we have successfully designed, analytically and numerically investigated novel THz emitters with the advantages of wide range tunability, compactness, room temperature operation, fast modulation and the possibility for monolithic integration, which are the most sought after properties in the new generation THz sources.
|
6 |
Development of Advanced Technologies for Mixed Natural Gas DetectionAtwi, Ali January 2022 (has links)
Advanced technologies for mixed gas detection are discussed. A calorific measurement technique for hydrogen-natural gas mixtures using ultrasonic transducers is examined. Measuring the speed of sound in the gas medium enables an accurate composition testing of mixed gas. At the beginning, different ultrasonic transducers are tested and a suitable one for gas testing is chosen. A jig is designed to conduct the testing with nitrogen/oxygen mixtures in a proof of principle experiment. Another jig is designed and manufactured to test a transit time ultrasonic method for flow rate calculation in order to obtain a full energy flow measurement.
A mixed gas leak detection technique based on laser spectroscopy is also studied. A Mid-Wave Infrared (MWIR) laser is implemented to be used as a source in a direct absorption measurement for methane detection. The implemented MWIR laser uses nonlinear optics to generate a MWIR output. A novel intracavity structure using periodically poled lithium niobate as the nonlinear crystal is implemented, and the highest blackbox efficiency for continuous wave difference frequency generation in the MWIR region is reported, to the best of our knowledge. Currently the output power is around 8.1 mW at 3.5 μm with a 1.058% W-1 blackbox efficiency. Watt level MWIR generation is expected using an optimized setup.
At last, a second laser source that operates in the long-wave infrared (LWIR) region was also studied. The discussed laser setup for LWIR generation is similar to the MWIR one with different pump and signal wavelengths and an orientation patterned gallium phosphide (OP-GaP) as the nonlinear crystal. Due to the absorption loss of GaP at the pump wavelength, only mW power level is expected out of the intracavity structure. Some alternative approaches for LWIR generation are discussed. / Thesis / Master of Applied Science (MASc)
|
7 |
Tunable Mid-Infrared Light Source Based on Difference Frequency Generation in Periodically Poled Lithium NiobateHan, Ling January 2007 (has links)
<p> In this work, tunable Mid-Infrared (IR) light sources based on quasi-phase matched (QPM) difference frequency generation (DFG) by periodically poled lithium niobate (PPLN) crystals are studied. The theory of DFG and the characteristics of lithium niobate crystals are described and analyzed. Characteristics of the wavelength tuning of QPM DFG by PPLN crystals are studied. In order to analyze in detail, simulation and experimental data of the widely tunable mid-IR laser source around 2 1- μm to 5 1- μm wavelength are presented. The simulations of DFG process by PPLN are conducted based on the nonlinear optics reported. In the experiment, a 1.064 μm Nd:YAG laser and a tunable Ti:sapphire laser are employed as the signal and pump lasers, respectively. Based on the studies of the wavelength tuning characteristics at different temperatures, an optimization procedure to achieve a maximum wavelength tuning range is proposed. The potential applications in gas detection of the mid-IR source are also described briefly. Recommendation for future works and potential applications of the PPLN DFG based mid-IR lasers are discussed. </p> / Thesis / Master of Applied Science (MASc)
|
8 |
Nonlinear mechanics and nonlinear material properties in micromechanical resonatorsBoales, Joseph 11 December 2018 (has links)
Microelectromechanical Systems are ubiquitous in modern technology, with applications ranging from accelerometers in smartphones to ultra-high precision motion stages used for atomically-precise positioning. With the appropriate selection of materials and device design, MEMS resonators with ultra-high quality factors can be fabricated at minimal cost. As the sizes of such resonators decrease, however, their mechanical, electrical, and material properties can no longer be treated as linear, as can be done for larger-scale devices. Unfortunately, adding nonlinear effects to a system changes its dynamics from exactly-solvable to only solvable in specific cases, if at all. Despite (and because of) these added complications, nonlinear effects open up an entirely new world of behaviors that can be measured or taken advantage of to create even more advanced technologies.
In our resonators, oscillations are induced and measured using aluminum nitride transducers. I used this mechanism for several separate highly-sensitive experiments. In the first, I demonstrate the incredible sensitivity of these resonators by actuating a mechanical resonant mode using only the force generated by the radiation pressure of a laser at room temperature.
In the following three experiments, which use similar mechanisms, I demonstrate information transfer and force measurements by taking advantage of the nonlinear behavior of the resonators. When nonlinear resonators are strongly driven, they exhibit sum and difference frequency generation, in which a large carrier signal can be mixed with a much smaller modulation to produce signals at sum and difference frequencies of the two signals. These sum and difference signals are used to detect information encoded in the modulation signal using optical radiation pressure and acoustic pressure waves.
Finally, in my experiments, I probe the nonlinear nature of the piezoelectric material rather than take advantage of the nonlinear resonator behavior. The relative sizes of the linear and nonlinear portions of the piezoelectric constant can be determined because the force applied to the resonator by a transducer is independent of the dielectric constant. This method allowed me to quantify the nonlinear constants.
|
9 |
Génération d'ondes TeraHertz par Différence de Fréquence / TeraHertz Waves Generation from Difference Frequency GenerationBernerd, Cyril 28 September 2018 (has links)
Le domaine des ondes TeraHertz (THz) s’étend de l’infrarouge lointain (15 μm / 20 THz) aux ondes radios (3000 μm / 0.1 THz). La couverture spectrale des sources actuelles, qu’elles soient thermique (lampes à mercure…), électronique (diode Gunn…) ou optique (laser, antennes…), ne permet pas de répondre à l’ensemble des applications en spectroscopie et en imagerie. Une alternative à ces sources est l’optique non linéaire paramétrique, qui permet de générer des ondes THz à partir du processus de Différence de Fréquences (DFG), et qui consiste à injecter un ou deux lasers dans un cristal non linéaire. Afin de couvrir au mieux le très large domaine THz, il est nécessaire de déterminer un ensemble de cristaux dont les propriétés optiques permettent de générer ces ondes avec de forts rendements de conversion.Le travail présenté dans ce manuscrit de thèse décrit l’étude de ces propriétés pour un ensemble de cristaux non linéaires, ainsi que des résultats expérimentaux de génération THz à partir de la DFG entre deux lasers monochromatiques en régime nanoseconde et picoseconde, ou entre deux composantes de Fourier au sein d’une impulsion laser femtoseconde. Nous avons sélectionné vingt nouveaux cristaux jamais étudiés dans le domaine THz auparavant, ainsi que le nouveau cristal organique de BNA. Nous avons mesuré leurs spectres de transmission du visible au THz, ainsi que les propriétés optiques non linéaires incluant les conditions d’accord de phase et le rendement de conversion. / THz-waves extend from the far InfraRed (15 μm – 20 THz) to radio waves (3000 μm – 0.1 THz). Current sources based on thermal (Mercury lamps…), electronics (Gunn diode...) or optics (laser, antennas…) technologies can’t cover this wide spectral range for applications in spectroscopy and imaging. An alternative is provided by parametric nonlinear optics, which leads to the generation of THz waves from Difference Frequency Generation (DFG) by injecting one or two lasers in a nonlinear crystal. To better cover the wide THz domain, it is necessary to determine nonlinear crystals with optical properties leading to the generation of such waves with high conversion efficiencies.This PhD thesis is devoted to the study of these properties for a panel of nonlinear crystals, along with experimental results of THz generation from DFG between two monochromatic lasers in the nanosecond and picosecond regimes, or between two Fourier components within a femtosecond laser. We selected twenty new crystals never studied before in the THz domain, along with the organic crystal of BNA. We measured their transmission spectra from visible to THz, and their nonlinear properties including phase-matching conditions and conversion efficiency.
|
10 |
Wavelength Conversion in Domain-disordered Quasi-phase Matching Superlattice WaveguidesWagner, Sean 31 August 2011 (has links)
This thesis examines second-order optical nonlinear wave mixing processes in domain-disordered quasi-phase matching waveguides and evaluates their potential use in compact, monolithically integrated wavelength conversion devices. The devices are based on a GaAs/AlGaAs superlattice-core waveguide structure with an improved design over previous generations. Quantum-well intermixing by ion-implantation is used to create the quasi-phase matching gratings in which the nonlinear susceptibility is periodically suppressed.
Photoluminescence experiments showed a large band gap energy blue shift around 70 nm after intermixing. Measured two-photon absorption coefficients showed a significant polarization dependence and suppression of up to 80% after intermixing. Similar polarization dependencies and suppression were observed in three-photon absorption and nonlinear refraction. Advanced modeling of second-harmonic generation showed reductions of over 50% in efficiency due to linear losses alone. Self-phase modulation was found to be the dominant parasitic nonlinear effect on the conversion efficiency, with reductions of over 60%. Simulations of group velocity mismatch showed modest reductions in efficiency of less than 10%.
Experiments on second-harmonic generation showed improvements in efficiency over previous generations due to low linear loss and improved intermixing. The improvements permitted demonstration of continuous wave second-harmonic generation for the first time in such structures with output power exceeding 1 µW. Also, Type-II phase matching was demonstrated for the first time. Saturation was observed as the power was increased, which, as predicted, was the result of self-phase modulation when using 2 ps pulses. By using 20 ps pulses instead, saturation effects were avoided. Thermo-optically induced bistability was observed in continuous wave experiments.
Difference frequency generation was demonstrated with wavelengths from the optical C-band being converted to the L- and U-bands with continuous waves. Conversion for Type-I phase matching was demonstrated over 20 nm with signal and idler wavelengths being separated by over 100 nm. Type-II phase matched conversion was also observed. Using the experimental data for analysis, self-pumped conversion devices were found to require external amplification to reach practical output powers. Threshold pump powers for optical parametric oscillators were calculated to be impractically large. Proposed improvements to the device design are predicted to allow more practical operation of integrated conversion devices based on quasi-phase matching superlattice waveguides.
|
Page generated in 0.1436 seconds