Spelling suggestions: "subject:"differential diffusion"" "subject:"differential dediffusion""
1 |
Analysis of gas differential diffusion through porous media using prompt gamma activation analysisRios-Perez, Carlos Alfredo, 1981- 03 March 2014 (has links)
Accurate estimates for the molecular transport coefficients are critical to predicting the movement of gases in geological media. Here I present a novel methodology for using prompt gamma activation analysis to measure the effective diffusivity of noble gases in a porous medium. I also present a model to estimate the connectivity parameter of a soil from measurements of its saturated conductivity, macro porosity, and pore volume and pore surface fractal dimensions. Experiments with argon or xenon diffusing through a nitrogen saturated geological media were conducted. The noble gas concentration variations at its source were measured using prompt gamma activation analysis and later compared to a numerical diffusion model to estimate the effective diffusion coefficient. Numerical simulations using the estimated diffusivity and the experimental argon data produced results with a correlation parameter R² = 0.98. However, neglecting transport mechanisms other than diffusion largely under-predicted the xenon depletion rates observed during the first hours of experiment. To explain these results, a second model was developed which included the effect of pressure gradients and bulk convection that might arise from the faster molecular migration of the light species in a non-equimolar system and gravitational currents. Finally, the fractal model developed for this dissertation was used to estimate the connectivity parameters and walking fractal dimension of a group of geological samples that were previously characterized. This model successfully predicted positive connectivity factors and walking fractal dimensions between two and three for every sample analyzed. / text
|
2 |
Turbulent combustion modeling for Large Eddy Simulation of non-adiabatic stratified flames / Modélisation de la combustion turbulente pour la simulation aux grandes échelles de flammes non-adiabatiques stratifiées en richesseMercier, Renaud 04 September 2015 (has links)
La conception des chambres de combustion industrielles (chambres de combustion aéronautiques, fours industriels, etc.) requiert une prédiction fine des phénomènes physiques dominants. En particulier, l’interaction flamme turbulence aux échelles résolues et non-résolues, l’impact de la composition et du mélange des réactifs, l’impact des pertes thermiques et de la diffusion différentielle doivent être capturés fidèlement. C’est dans ce contexte que le modèle de combustion turbulente F-TACLES (Filtered TAbulated Chemistryfor Large Eddy Simulation) a été développé afin de coupler une méthode de chimie tabulée (FPI) avec le formalisme de la simulation aux grandes échelles(LES).Dans cette thèse, le modèle F-TACLES, initialement développé pour des écoulements adiabatiques, est étendu à la prise en compte des pertes thermiques. Un formalisme adapté à l’utilisation de bases de chimie tabulée calculées avec la diffusion différentielle est aussi proposé. Ces développements sont validés sur deux configurations : le brûleur TSF et le brûleur SWB.La modélisation de l’interaction flamme-turbulence est ensuite étudiée. Une étude de sensibilité du modèle de plissement de sous-maille de Charlette et al. (2002) à ses paramètres et sous-modèles est réalisée sur le brûleur SWB.En particulier, une méthode d’estimation dynamique des paramètres est aussi évaluée et montre d’excellents résultats. Une généralisation du formalisme de la LES pour les écoulements réactifs est ensuite proposée afin de prendre en compte explicitement les deux filtres mis en jeu dans les simulations : le filtre associé à l’écoulement et le filtre associé à la flamme. Deux stratégies de fermetures sont proposées en se basant sur des modèles existants (F-TACLES et TFLES). Le modèle obtenu, appelé modèle F2-TACLES, est ensuite validé et comparé avec F-TACLES sur la configuration semi-industrielle PRECCINSTA.Pour terminer, la capacité du modèle F-TACLES à capturer l’impact des pertes thermiques et de la composition des gaz frais sur la topologie de flammes est évaluée. Cette étude est réalisée sur une série de flammes CH4-H2-Air turbulentes en giration et prenant des formes différentes en fonction du niveau de pertes thermiques et de la composition des réactifs. / The design of industrial combustion chambers (aeronautical engines, industrial furnaces, etc.) require a fine prediction of the different governing phenomena. Flame-turbulence interaction at resolved and unresolved scales, impact of reactants composition and mixing process, impact of heat losses and differential diffusion have to be correctly captured in such configurations. For that purpose,the turbulent combustion model F-TACLES (Filtered Tabulated Chemistry forLarge Eddy Simulation) has been developed to couple tabulated chemistry with large eddy simulation (LES) formalism.In this thesis, the F-TACLES model, initially developed for unity Lewis number and adiabatic flows, is extended to account for heat losses. A formalism allowing the use of chemical databases (1-D premixed flames) computed with differential diffusion is also proposed. The extended model is validated on two different configurations: the TSF burner and the SWB burner. Modeling of flame-turbulence interaction is then studied. For unresolved flame turbulence interactions, a sensitivity analysis of the Charlette et al. (2002) sub-grid scale wrinkling model to its own parameters and sub-models is performed on the SWB burner. A dynamic estimation of the model parameter is also assessed and showed very promising results. For resolved flame-turbulence interactions, a generalized formalism of the LES of reactive flows is proposed in order to account explicitly for both flame and flow filters. Two closure strategies are proposed based on the F-TACLES and TFLES models. The F2-TACLESmodel is then validated and compared to the original formulation of the FTACLES model. This study is performed on the lean premixed semi-industrial PRECCINSTA burner.The ability of the extended F-TACLES model to capture the impact of both heat losses and fresh gas composition on the flame topology is assessed. This study is conducted on a CH4-H2-Air turbulent and swirling flame series. These flames exhibit very different shapes depending on the level of heat losses and fuel composition.
|
3 |
Measurements of the structure of turbulent premixed and stratified methane/air flamesSweeney, Mark January 2011 (has links)
The influence of stratification on the structure of turbulent methane/air combustion is investigated using experimental data from laboratory scale burners: a weakly turbulent slot burner, and a higher turbulence co-annular swirl burner. The degree of stratification can be controlled independently of the overall fuel/air flow rate. The resulting measurements of scalar and velocity fields provide detailed test cases for existing and emerging turbulent flame models, covering a range of u'/sL from 1 to 10, turbulence intensities from 5% to 60%, and stratification ratios from 1 to 3. Simultaneous Rayleigh/Raman/CO-LIF measurements of temperature and major species concentrations - CH4, CO2, CO, H2, H2O and O2 - along a line are used to investigate the structure of a series of flames in both the slot and swirl burners. Concurrent cross-planar OH-PLIF allows thermal gradients to be angle corrected to their three-dimensional values. Finally, non-reacting and reacting velocity fields complete the flame database. The behavior of major species concentrations in the slot and swirl burner with respect to temperature is found to agree well on the mean with unstrained premixed laminar flame calculations. Scalar means conditioned on stoichiometry also show good agreement, aside from hydrogen which is enhanced under stratified conditions. Surface density function and scalar dissipation are lower than calculated values in all cases, suggesting that turbulence-induced thickening dominates the effect of increased strain. Metrics commonly used to derive flame surface density (FSD) were investigated. FSD may be determined using a statistical method based on measurements of temperature and its gradient, or a geometric method based on 2D temperature or LIF imaging. A third metric, an extension of the geometric method, is proposed. Good agreement is observed between the three metrics. The current database provides the first detailed high resolution scalar measurements for premixed and stratified flames. The data analysis provides insight into the physics of stratification: for the flames considered, the effects of stratification appear to be surprisingly small compared to those of turbulence, even at significant stratification ratios. The datasets provide a means of validating current and future computational turbulent combustion models.
|
4 |
<b>A Computational Study of Laminar Counterflow Flames</b>Kole Allen Pempek (18436221) 27 April 2024 (has links)
<p dir="ltr">Counterflow diffusion flames have been studied in depth as a one-dimensional flame, and are often used to study chemical kinetics, soot formation, and extinction and ignition characteristics of flames because of the low computing costs associated with one dimensional computations. Further, strained flames have been used in models of turbulent flames with the assumption that the underlying chemistry can be represented by a limited number of variables. Detailed three dimensional simulations of H<sub>2</sub>/CH<sub>4</sub>/air counterflow diffusion flames are performed using CONVERGE CFD [41] and compared to one dimensional simulation and experimental Dual-Pump Coherent anti-Stokes Raman Scattering (DPCARS) measurements of temperature and normalized mole fractions of H<sub>2</sub> and O<sub>2</sub>[37]. The multi-dimensional effects of differential and advective diffusion are explored. The effects of boundary conditions far from the centerline axis of the burner one flow field and flame shape are investigated.</p>
|
Page generated in 0.074 seconds