• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The maximum k-differential coloring problem

Bekos, Michael A., Kaufmann, Michael, Kobourov, Stephen G., Stavropoulos, Konstantinos, Veeramoni, Sankar 07 1900 (has links)
Given an n-vertex graph Gand two positive integers d, k is an element of N, the (d, kn)-differential coloring problem asks for a coloring of the vertices of G(if one exists) with distinct numbers from 1 to kn(treated as colors), such that the minimum difference between the two colors of any adjacent vertices is at least d. While it was known that the problem of determining whether a general graph is (2, n)-differential colorable is NP-complete, our main contribution is a complete characterization of bipartite, planar and outerplanar graphs that admit (2, n)-differential colorings. For practical reasons, we also consider color ranges larger than n, i.e., k > 1. We show that it is NP-complete to determine whether a graph admits a (3, 2n)-differential coloring. The same negative result holds for the (left perpendicular 2n/3 right pendicular, 2n)-differential coloring problem, even in the case where the input graph is planar.

Page generated in 0.1175 seconds