Spelling suggestions: "subject:"differential equations fluid mechanics"" "subject:"differential equations tluid mechanics""
1 |
A report on solutions of some non-linear differential equations arising in third grade fluid flowsIthikkat, Vidhya 01 October 2003 (has links)
No description available.
|
2 |
Extensional thin layer flowsHowell, P. D. January 1994 (has links)
In this thesis we derive and solve equations governing the flow of slender threads and sheets of viscous fluid. Our method is to solve the Navier-Stokes equations and free surface conditions in the form of asymptotic expansions in powers of the inverse aspect ratio of the fluid, i.e. the ratio of a typical thickness to a typical length. In the first chapter we describe some of the many industrial processes in which such flows are important, and summarise some of the related work which has been carried out by other authors. We introduce the basic asymptotic methods which are employed throughout this thesis in the second chapter, while deriving models for two-dimensional viscous sheets and axisymmetric viscous fibres. In chapter 3 we show that when these equations govern the straightening or buckling of a curved viscous sheet, simplification may be made via the use of a suitable short timescale. In the following four chapters, we derive models for nonaxisymmetric viscous fibres and fully three-dimensional viscous sheets; for each we consider separately the cases where the dimensionless curvature is small and where the dimensionless curvature is of order one. We find that the models which result bear a marked similarity to the theories of elastic rods, plates and shells. In chapter 8 we explain in some detail why the Trouton ratio - the ratio between the extensional viscosity and the shear viscosity - is 3 for a slender viscous fibre and 4 for a slender viscous sheet. We draw our conclusions and suggest further work in the final chapter.
|
3 |
Penetration of a shaped chargePoole, Chris January 2005 (has links)
A shaped charge is an explosive device used to penetrate thick targets using a high velocity jet. A typical shaped charge contains explosive material behind a conical hollow. The hollow is lined with a compliant material, such as copper. Extremely high stresses caused by the detonation of the explosive have a focusing effect on the liner, turning it into a long, slender, stretching jet with a tip speed of up to 12km/s. A mathematical model for the penetration of this jet into a solid target is developed with the goal of accurately predicting the resulting crater depth and diameter. The model initially couples fluid dynamics in the jet with elastic-plastic solid mechanics in the target. Far away from the tip, the high aspect ratio is exploited to reduce the dimensionality of the problem by using slender body theory. In doing so, a novel system of partial differential equations for the free-boundaries between fluid, plastic and elastic regions and for the velocity potential of the jet is obtained. In order to gain intuition, the paradigm expansion-contraction of a circular cavity under applied pressure is considered. This yields the interesting possibility of residual stresses and displacements. Using these ideas, a more realistic penetration model is developed. Plastic flow of the target near the tip of the jet is considered, using a squeeze-film analogy. Models for the flow of the jet in the tip are then proposed, based on simple geometric arguments in the slender region. One particular scaling in the tip leads to the consideration of a two-dimensional paradigm model of a ``filling-flow'' impacting on an obstacle, such as a membrane or beam. Finally, metallurgical analysis and hydrocode runs are presented. Unresolved issues are discussed and suggestions for further work are presented.
|
4 |
The mathematics of foamBreward, C. J. W. January 1999 (has links)
The aim of this thesis is to derive and solve mathematical models for the flow of liquid in a foam. A primary concern is to investigate how so-called `Marangoni stresses' (i.e. surface tension gradients), generated for example by the presence of a surfactant, act to stabilise a foam. We aim to provide the key microscopic components for future foam modelling. We begin by describing in detail the influence of surface tension gradients on a general liquid flow, and various physical mechanisms which can give rise to such gradients. We apply the models thus devised to an experimental configuration designed to investigate Marangoni effects. Next we turn our attention to the flow in the thin liquid films (`lamellae') which make up a foam. Our methodology is to simplify the field equations (e.g. the Navier-Stokes equations for the liquid) and free surface conditions using systematic asymptotic methods. The models so derived explain the `stiffening' effect of surfactants at free surfaces, which extends considerably the lifetime of a foam. Finally, we look at the macroscopic behaviour of foam using an ad-hoc averaging of the thin film models.
|
5 |
Mathematical modelling of flow and transport phenomena in tissue engineeringPearson, Natalie Clare January 2014 (has links)
Tissue engineering has great potential as a method for replacing or repairing lost or damaged tissue. However, progress in the field to date has been limited, with only a few clinical successes despite active research covering a wide range of cell types and experimental approaches. Mathematical modelling can complement experiments and help improve understanding of the inherently complex tissue engineering systems, providing an alternative perspective in a more cost- and time-efficient manner. This thesis focusses on one particular experimental setup, a hollow fibre membrane bioreactor (HFMB). We develop a suite of mathematical models which consider the fluid flow, solute transport, and cell yield and distribution within a HFMB, each relevant to a different setup which could be implemented experimentally. In each case, the governing equations are obtained by taking the appropriate limit of a generalised multiphase model, based on porous flow mixture theory. These equations are then reduced as far as possible, through exploitation of the small aspect ratio of the bioreactor and by considering suitable parameter limits in the subsequent asymptotic analysis. The reduced systems are then either solved numerically or, if possible, analytically. In this way we not only aim to illustrate typical behaviours of each system in turn, but also highlight the dependence of results on key experimentally controllable parameter values in an analytically tractable and transparent manner. Due to the flexibility of the modelling approach, the models we present can readily be adapted to specific experimental conditions given appropriate data and, once validated, be used to inform and direct future experiments.
|
6 |
Uniqueness results for viscous incompressible fluidsBarker, Tobias January 2017 (has links)
First, we provide new classes of initial data, that grant short time uniqueness of the associated weak Leray-Hopf solutions of the three dimensional Navier-Stokes equations. The main novelty here is the establishment of certain continuity properties near the initial time, for weak Leray-Hopf solutions with initial data in supercritical Besov spaces. The techniques used here build upon related ideas of Calderón. Secondly, we prove local regularity up to the at part of the boundary, for certain classes of solutions to the Navier-Stokes equations, provided that the velocity field belongs to L<sub>∞</sub>(-1; 0; L<sup>3, β</sup>(B(1) ⋂ ℝ<sup>3</sup> <sub>+</sub>)) with 3 ≤ β < ∞. What enables us to build upon the work of Escauriaza, Seregin and Šverák [27] and Seregin [100] is the establishment of new scale-invariant estimates, new estimates for the pressure near the boundary and a convenient new ϵ-regularity criterion. Third, we show that if a weak Leray-Hopf solution in ℝ<sup>3</sup> <sub>+</sub>×]0,∞[ has a finite blow-up time T, then necessarily lim<sub>t↑T</sub>||v(·, t)||<sub>L<sup>3,β</sup>(ℝ<sup>3</sup> <sub>+</sub>)</sub> = ∞ with 3 < β < ∞. The proof hinges on a rescaling procedure from Seregin's work [106], a new stability result for singular points on the boundary, suitable a priori estimates and a Liouville type theorem for parabolic operators developed by Escauriaza, Seregin and Šverák [27]. Finally, we investigate a notion of global-in-time solutions to the Navier- Stokes equations in ℝ<sup>3</sup>, with solenoidal initial data in the critical Besov space ?<sup>-1/4</sup><sub>4,∞</sub>(ℝ<sup>3</sup>), which has certain continuity properties with respect to weak* convergence of the initial data. Such properties are motivated by the strategy used by Seregin [106] to show that if a weak Leray-Hopf solution in ℝ<sup>3</sup>×]0,∞[ has a finite blow-up time T, then necessarily lim<sub>t↑T</sub> ||v(·, t)||<sub>L<sub>3</sub>(ℝ<sup>3</sup>)</sub> = ∞. We prove new decomposition results for Besov spaces, which are key in the conception and existence theory of such solutions.
|
7 |
Mathematical and computational modelling of tissue engineered bone in a hydrostatic bioreactorLeonard, Katherine H. L. January 2014 (has links)
In vitro tissue engineering is a method for developing living and functional tissues external to the body, often within a device called a bioreactor to control the chemical and mechanical environment. However, the quality of bone tissue engineered products is currently inadequate for clinical use as the implant cannot bear weight. In an effort to improve the quality of the construct, hydrostatic pressure, the pressure in a fluid at equilibrium that is required to balance the force exerted by the weight of the fluid above, has been investigated as a mechanical stimulus for promoting extracellular matrix deposition and mineralisation within bone tissue. Thus far, little research has been performed into understanding the response of bone tissue cells to mechanical stimulation. In this thesis we investigate an in vitro bone tissue engineering experimental setup, whereby human mesenchymal stem cells are seeded within a collagen gel and cultured in a hydrostatic pressure bioreactor. In collaboration with experimentalists a suite of mathematical models of increasing complexity is developed and appropriate numerical methods are used to simulate these models. Each of the models investigates different aspects of the experimental setup, from focusing on global quantities of interest through to investigating their detailed local spatial distribution. The aim of this work is to increase understanding of the underlying physical processes which drive the growth and development of the construct, and identify which factors contribute to the highly heterogeneous spatial distribution of the mineralised extracellular matrix seen experimentally. The first model considered is a purely temporal model, where the evolution of cells, solid substrate, which accounts for the initial collagen scaffold and deposited extracellular matrix along with attendant mineralisation, and fluid in response to the applied pressure are examined. We demonstrate that including the history of the mechanical loading of cells is important in determining the quantity of deposited substrate. The second and third models extend this non-spatial model, and examine biochemically and biomechanically-induced spatial patterning separately. The first of these spatial models demonstrates that nutrient diffusion along with nutrient-dependent mass transfer terms qualitatively reproduces the heterogeneous spatial effects seen experimentally. The second multiphase model is used to investigate whether the magnitude of the shear stresses generated by fluid flow, can qualitatively explain the heterogeneous mineralisation seen in the experiments. Numerical simulations reveal that the spatial distribution of the fluid shear stress magnitude is highly heterogeneous, which could be related to the spatial heterogeneity in the mineralisation seen experimentally.
|
Page generated in 0.1618 seconds