• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometric Seifert 4-manifolds with aspherical bases /

Kemp, M. C. January 2005 (has links)
Thesis (Ph. D.)--School of Mathematics and Statistics, Faculty of Science, University of Sydney, 2005. / Bibliography: p. 89-91.
2

Geometric Seifert 4-manifolds with aspherical bases

Kemp, M. C. January 2005 (has links)
Thesis (Ph. D.)--University of Sydney, 2005. / Title from title screen (viewed 22 May 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Mathematics and Statistics, Faculty of Science. Includes bibliographical references. Also available in print form.
3

Διαρμονικές υποπολλαπλότητες της σφαίρας S3 / Biharmonic submanifolds of sphere S3

Σερεμετάκη, Στέλλα 30 August 2007 (has links)
Αντικείμενο της εργασίας αυτής είναι η αναζήτηση των διαρμονικών υποπολλαπλοτήτων της σφαίρας S3. Η μέθοδος που εφαρμόζεται συνδέεται με την αρχή του λογισμού των μεταβολών. Γίνεται σύντομη ανάλυση της μεθοδολογίας του λογισμού των μεταβολών και εφαρμογή αυτής σε γνωστές θεωρίες μεταξύ των οποίων είναι οι αρμονικές και διαρμονικές απεικονίσεις. Ορίζουμε τις έννοιες των αρμονικών και διαρμονικών απεικονίσεων μεταξύ δύο πολλαπλοτήτων Riemann και δίνουμαι παραδείγματα τέτοιων απεικονίσεων. Τέλος, προσδιορίζουμαι τις διαρμονικές καμπύλες και τις διαρμονικές επιφάνειες της σφαίρας S3. Οι κεντρικές μας αναφορές είναι οι εργασίες : (1) Biharmonic submanifolds in spheres, Israel.J.Math.,130(2002), 109-123, των R.Caddeo, S. Montaldo και C .Oniciuic. (2) A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1-68 των J. Eells και L.Lemaire. / The object of this project is the investigation of the biharmonic submanifolds of sphere S3. The method we apply is the variational method. We shortly analyse the method of variations and we describe some theorys as they derived by this method. Between those theorys are the harmonic and biharmonic maps. We define the notions of harmonic and biharmonic maps between two Riemannian manifolds and we introduce some examples. Finally, we allocate the biharmonic curves and surfaces of sphere S3. The central references are: (1) Biharmonic submanifolds in spheres, Israel.J.Math.,130(2002), 109-123, των R.Caddeo, S. Montaldo και C .Oniciuic. (2) A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1-68 των J. Eells και L.Lemaire.
4

Tensory a jejich aplikace v mechanice / Tensors and their applications in mechanics

Adejumobi, Mudathir January 2020 (has links)
The tensor theory is a branch of Multilinear Algebra that describes the relationship between sets of algebraic objects related to a vector space. Tensor theory together with tensor analysis is usually known to be tensor calculus. This thesis presents a formal category treatment on tensor notation, tensor calculus, and differential manifold. The focus lies mainly on acquiring and understanding the basic concepts of tensors and the operations over them. It looks at how tensor is adapted to differential geometry and continuum mechanics. In particular, it focuses more attention on the application parts of mechanics such as; configuration and deformation, tensor deformation, continuum kinematics, Gauss, and Stokes' theorem with their applications. Finally, it discusses the concept of surface forces and stress vector.

Page generated in 0.0574 seconds