• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards high throughput single crystal neutron diffraction of hydrogen bonded molecular complexes

Jones, Andrew January 2012 (has links)
This work presents findings from experiments carried out using the neutron Laue method in tandem with laboratory source X-ray diffraction to characterise a series of organic molecular complexes which exhibit interesting, and potentially “tunable”, temperature dependent charge transfer effects, such as proton migration and proton disorder within hydrogen bonded networks. These subtle processes are studied by variable temperature neutron diffraction studies, allowing the positional and anisotropic displacement parameters of the hydrogen atoms to be refined accurately and their evolution with temperature followed. The hydrogen atom behaviour is found to be influenced by the local environment, including weak intermolecular interactions in the vicinity of the hydrogen bond under study. Complexes of urea and methyl substituted ureas with small organic acids are presented, which show robust and reproducible structural motifs. In favourable circumstances, these contain short, strong hydrogen bonds (SSHBs) within which the proton may undergo temperature dependent migration. By synthesising a number of complexes containing SSHBs, potential routes to the design of proton migration complexes are found, which utilise crystal engineering principles and pKa matching. Variable temperature studies conducted on these complexes also show unusual thermal expansion properties and phase transitions in urea-acid complexes which do not display proton migration. Systems containing hydrogen bonded dimers of 3,5-dinitrobenzoic acid are also studied, and shown to contain temperature proton disorder within moderate strength hydrogen bonds linking the dimers. The presence and potential onset temperature of any disorder is found to be influenced by interactions around the acid dimers and potential routes to controlling proton disorder are discussed. Complexes of the proton sponge, 1,8-bis(dimethylamino)napthalene (DMAN), with organic acids are also presented, in which the structures have been determined using neutron diffraction. DMAN readily accepts a proton from the acid co-molecules used in forming the complexes, forming a strong intramolecular SSHB within the protonated DMAN. Strong intermolecular hydrogen bonds are also induced between the acid molecules in many cases. The neutron studies presented here investigate the effect of weak interactions on the behaviour of hydrogen atoms located within these SSHBs, and also indicate over what distance such interactions significantly affect the hydrogen atom behaviour.
2

The role of charge and orbital ordering in quadruple perovskite materials with multiferroic potential

Perks, Natasha J. January 2015 (has links)
With the overriding goal of developing functional multiferroic systems with technological potential, this thesis focuses on the role of orbital and charge ordering in coupling magnetism and ferroelectricity in synthetic quadruple perovskites. Using x-ray diffraction as the primary characterisation tool, modulations to crystal ordering have been interpreted in terms of orbital occupation and charge variation. Expanding on previous magnetic structure studies and polarisation measurements, structural analysis of CaMn<sub>7</sub>O<sub>12</sub> has led to the experimental realisation of a new mechanism for multiferroicity, resulting from a "magneto-orbital helix". Motivated by the idea of tuning multiferroic properties through varying manganese valence, the doped system CaCu<sub>x</sub>Mn<sub>7-x</sub>O<sub>12</sub> has been studied. Structural models considering the possibility of domain formation and multiple coexisting modulations have been tested against x-ray diffraction data. Finally, motivated by theoretical predictions of ferroelectric phases and multiferroicity in doped, simple, manganite perovskites, a structural model for the low temperature phase of NaMn<sub>7</sub>O<sub>12</sub> has been developed, based upon theoretical predictions for orbital ordering and the experimentally determined magnetic structure. This model has been tested against previously measured neutron diffraction data. The importance of understanding crystal formation and domain structures when applying theoretical models has been highlighted, and has prompted the consideration of future work involving viewing and manipulating twin formation.
3

Novel High Voltage Electrodes for Li-ion Batteries

Tripathi, Rajesh January 2013 (has links)
An alternate family of “high” voltage (where the equilibrium voltage lies between 3.6 V and 4.2 V) polyanion cathode materials is reported in this thesis with the objective of improving specific energy density (Wh/kg) and developing a better understanding of polyanion electrochemistry. The electrochemical properties, synthesis and the structure of novel fluorosulfate materials crystallizing in the tavorite and the triplite type mineral structures are described. These materials display highest discharge voltages reported for any Fe2+/Fe3+ redox couple. LiFeSO4F was prepared in both the tavorite and the triplite polymorphs using inexpensive and scalable methods. Complete structural characterization was performed using X-ray and neutron based diffraction methods. A rapid synthesis of fluorosulfates can be achieved by using microwave heating. The local rapid heating created by the microwaves generates nanocrystalline LiFeSO4F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method. Phase transformation to the more stable triplite framework, facilitated by the lattice defects which include hydroxyl groups, is therefore easily triggered. The formation of nanocrystalline tavorite leads to nanocrystalline triplite, which greatly favors its electrochemical performance because of the inherently disordered nature of the triplite structure. Direct synthesis of the electrochemically active triplite type compound can be carried out either by extending the duration of the solvothermal reactions or by the partial substitution of Fe by Mn to produce LiFe1-xMnxSO4F. This study, overall, has led to a better understanding of the transformation of tavorite to the triplite phase. To examine Li and the Na ion conduction and their correlation with the electrochemical performance of 3-D, 2-D and 1-D ion conductors, atomistic scale simulations have been used to investigate tavorite type LiFeSO4F, NaFeSO4F, olivine type NaMPO4 (M= Fe, Mn, Fe0.5Mn0.5) and layered Na2FePO4F. These calculations predict high mobility of the Li-ion in the tavorite type LiFeSO4F but sluggish Na-ion transport in iso-structural NaFeSO4F. High mobility of the Na-ion is predicted for phosphate layered and olivine structures. Finally, the synthesis and structural details of NaMSO4F (M=Fe, Mn) and NH4MSO4F (M=Fe, Mn) are presented in the last chapter to show the structural diversity present in the fluorosulfate family.
4

Novel High Voltage Electrodes for Li-ion Batteries

Tripathi, Rajesh January 2013 (has links)
An alternate family of “high” voltage (where the equilibrium voltage lies between 3.6 V and 4.2 V) polyanion cathode materials is reported in this thesis with the objective of improving specific energy density (Wh/kg) and developing a better understanding of polyanion electrochemistry. The electrochemical properties, synthesis and the structure of novel fluorosulfate materials crystallizing in the tavorite and the triplite type mineral structures are described. These materials display highest discharge voltages reported for any Fe2+/Fe3+ redox couple. LiFeSO4F was prepared in both the tavorite and the triplite polymorphs using inexpensive and scalable methods. Complete structural characterization was performed using X-ray and neutron based diffraction methods. A rapid synthesis of fluorosulfates can be achieved by using microwave heating. The local rapid heating created by the microwaves generates nanocrystalline LiFeSO4F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method. Phase transformation to the more stable triplite framework, facilitated by the lattice defects which include hydroxyl groups, is therefore easily triggered. The formation of nanocrystalline tavorite leads to nanocrystalline triplite, which greatly favors its electrochemical performance because of the inherently disordered nature of the triplite structure. Direct synthesis of the electrochemically active triplite type compound can be carried out either by extending the duration of the solvothermal reactions or by the partial substitution of Fe by Mn to produce LiFe1-xMnxSO4F. This study, overall, has led to a better understanding of the transformation of tavorite to the triplite phase. To examine Li and the Na ion conduction and their correlation with the electrochemical performance of 3-D, 2-D and 1-D ion conductors, atomistic scale simulations have been used to investigate tavorite type LiFeSO4F, NaFeSO4F, olivine type NaMPO4 (M= Fe, Mn, Fe0.5Mn0.5) and layered Na2FePO4F. These calculations predict high mobility of the Li-ion in the tavorite type LiFeSO4F but sluggish Na-ion transport in iso-structural NaFeSO4F. High mobility of the Na-ion is predicted for phosphate layered and olivine structures. Finally, the synthesis and structural details of NaMSO4F (M=Fe, Mn) and NH4MSO4F (M=Fe, Mn) are presented in the last chapter to show the structural diversity present in the fluorosulfate family.

Page generated in 0.0982 seconds