• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding and Predicting Water Quality Impacts on Coagulation

Davis, Christina Clarkson 09 November 2014 (has links)
Effective coagulation is critical to the production of safe, potable drinking water, but variations in the chemical composition of source water can present challenges in achieving targeted contaminant removal and predicting coagulation outcomes. A critical literature review describes factors affecting the hydrolysis reactions of metal salt coagulants and the resulting precipitates. Properties of two key contaminants, turbidity and natural organic matter (NOM), are explored in the context of removal during coagulation, and the influence of co-occurring ions is described. While it is apparent that NOM character determines the minimum achievable organic carbon residual, the effects of water quality—including pH, NOM character and concentration, and concentrations of synergistic and competitive ions—on overall coagulation efficacy and NOM removal may be underestimated. An experimental research plan was devised to investigate the influence of water quality in coagulation and provide data to support the development of a predictive coagulation model. NOM is capable of interfering with ferric iron hydrolysis and influencing the size, morphology, and identity of precipitates. Conversely, calcium is known to increase the size and aggregation of Fe3+ precipitates and increase surface potential, leading to more effective coagulation and widening the pH range of treatment. Experiments and modeling were conducted to investigate the significance of the Fe/NOM ratio and the presence of calcium in coagulation. At the high Fe/NOM ratio, sufficient or excess ferric hydroxide was available for NOM removal, and coagulation proceeded according to expectations based upon the literature. At the low Fe/NOM ratio, however, NOM inhibited Fe3+ hydrolysis, reduced zeta potential, and suppressed the formation of filterable Fe flocs, leading to interference with effective NOM removal. In these dose-limited systems, equilibrating NOM with 1 mM Ca2+ prior to dosing with ferric chloride coagulant increased the extent of Fe3+ hydrolysis, increased zeta potential, decreased the fraction of colloidal Fe, and improved NOM removal. In dose-limited systems without calcium, complexation of Fe species by NOM appears to be the mechanism by which coagulation is disrupted. In systems with calcium, data and modeling indicate that calcium complexation by NOM neutralizes some of the negative organic charge and minimizes Fe complexation, making Fe hydrolysis species available for growth and effective coagulation. Experiments were conducted to investigate the influence of aqueous silica and pH on the removal of natural organic matter (NOM) by coagulation with ferric chloride. Samples with preformed ferric hydroxide were also compared to samples coagulated in situ to assess the role of coprecipitation. The moderate (10 mg/L) and high (50 mg/L) SiO2 concentrations both demonstrated interference with NOM removal at pH 6.5-7.5. In turn, NOM at 2 mg/L as DOC interfered with silica sorption at the moderate silica level and in samples with preformed ferric hydroxide at the high silica level. The combination of NOM and high silica led to decreases in DOC sorption and unexpected increases in silica sorption in the coprecipitated samples. The fraction of colloidal Fe passing a 0.45-μm filter also increased in the coprecipitated samples with both NOM and high silica. It is hypothesized that the combination of NOM and high silica synergistically interfered with Fe precipitation and particle growth processes, with NOM having the greater effect at lower pH and shorter reaction times, and silica exerting greater influence at higher pH and longer reaction time. Direct competition for surface sites and electrostatic repulsion were also influential. An overall goal for this research was the development of a quantitative coagulation model. Previous attempts to model coagulation have been limited by the inherent complexities of simultaneously predicting ligand sorption, metal complexation, floc surface charge, and particle removal. A diffuse layer (DLM) surface complexation model was formulated to simultaneously predict sorption of NOM and other key species, including silica, calcium, and carbonate alkalinity. Predictions of surface potential were used to estimate zeta potential and resulting regimes of effective aggregation and turbidity removal. The model provided good predictive ability for data from bench-scale experiments with synthetic water and jar tests of nine U.S. source waters. Under most conditions, the model provides excellent capability for predicting NOM sorption, calcium sorption, and particle destabilization and adequate capability for predicting silica sorption. Model simulations of hypothetical scenarios and experimental results help to explain practical observations from the literature. The DLM can be optimized to site-specific conditions and expanded to include sorption of additional species, such as arsenic. / Ph. D.
2

Diffuse layer modeling on iron oxides : single and multi-solute systems on ferrihydrite and granular ferric hydroxide

Stokes, Shannon Nicole 04 October 2012 (has links)
Diffuse Layer Modeling was used to describe single and multi-solute adsorption of Pb(II), Cu(II), Zn(II) and Cd(II) to ferrihydrite and As(V), V(V) Si and Ca(II) on granular ferric hydroxide, a commercially available iron oxide. Macroscopic data were used in conjunction with x-ray adsorption spectroscopy (XAS) data to evaluate the diffuse layer surface complexation model (DLM) for predicting sorption over a range of conditions. A self-consistent database was created for each of the adsorbents. The DLM provided excellent fits to the single solute data for the ferrihydrite system with the incorporation of spectroscopic evidence. Little competition was seen in the bisolute systems, except under very high coverages. While the DLM captured the lack of competition under low and medium coverages, competitive effects were not adequately modeled by the updated DLM for high coverages. Challenges remain in adequately describing metal removal when sorption may not be the primary mechanism of removal. The capabilities of the DLM were then evaluated for describing and predicting multisolute sorption to granular ferric hydroxide (GFH). The model can adequately describe anion competition, but the electrostatic effects due to outer sphere sorption were overpredicted, leading to an inadequate model fit for As(V) and Ca²⁺ systems. Despite the limitations of the DLM, it may be an appropriate compromise between goodness of fit and number of parameters for future integration into dynamic transport models and thermodynamic databases. / text
3

Modélisation des couches minces électriques dans les bio-microsystèmes

De Vroey, Laurent 13 February 2008 (has links)
L'utilisation de systèmes électromécaniques microstructurés pour analyser et manipuler des solutions biologiques ou des cellules vivantes (bio-MEMS) a pris un essor considérable ces dernières années. Dans ce genre de dispositifs, l'utilisation de champs électriques est fréquente, que ce soit pour percer les membranes des cellules et effectuer une transfection de gènes par exemple (électroporation), pour les déplacer ((di )électrophorèse) ou agir sur le milieu dans lequel elles baignent (électro-hydrodynamique). La modélisation des phénomènes induits par ces champs électriques dans les solutions aqueuses est un problème multi-physique et multi-échelle. Au déplacement des électrons s'ajoute en effet la migration des ions présents dans la solution. Ceux-ci se concentrent en particulier aux abords des électrodes formant des couches minces dont les paramètres évoluent de façon encore mal connue en fonction notamment des conditions d'alimentation. La thèse se concentre sur les applications électro-hydrodynamiques dans lesquelles une solution saline est mise en mouvement par des forces électriques agissant sur ses ions, concentrés dans des couches de charges minces, au voisinage des électrodes. Sont d'abord présentés les résultats expérimentaux et des modèles simples du problème électromécanique dans le cas de structures 2D à électrodes coplanaires. Devant l’importance des écarts entre les résultats théoriques et expérimentaux, des modèles plus complets sont alors proposés et évalués. Malgré les améliorations fournies par ces modèles, des écarts importants subsistent entre théorie et expérimentation, et une étude totalement découplée des aspects électriques et mécaniques est alors réalisée sur une structure 1D. Cette étude permet de mieux cerner les dépendances de certains paramètres physiques vis-à-vis des conditions d’alimentation avec une comparaison systématique des résultats expérimentaux et des résultats de modèles circuits linéaires et non linéaires, au travers d’une approche fréquentielle par diagrammes de Bode et d’une approche temporelle par figures de Lissajous. Il a ainsi pu être mis en évidence l’importance pratique potentielle de certains phénomènes rarement pris en compte dans des modèles globaux : saturation des couches minces, permittivité non constante, effets de bords,… Des applications pratiques ont pu être dégagées et testées expérimentalement, dans le domaine des micro-mélangeurs. Outre ces développements, une brève étude est décrite, portant sur la modélisation des cellules et de leurs membranes extrêmement fines en regard des autres dimensions caractéristiques du système, dans la perspective par exemple d'applications en électroporation. Une autre étude est faite portant sur l’utilisation potentielle de méthodes numériques dites « sans maillage » pour ce type d’applications, l’accent étant mis sur la résolution du problème de Poisson dans des systèmes 2D. / Analysis and manipulation of biological solutions or cells in micro-electromechanical systems has considerably improved during last years. In such systems, it is common to use electric fields, in order e.g. to increase cells membrane porosity, which is known as electroporation, and thus allow for gene transfection. Electric fields can also generate the motion of cells in a solution by (di-)electrophoresis effects or induce the movement of the solution itself, through electro-hydrodynamic effects. Finding theoretical models for those phenomena requires a multi-physic and multi-scale approach. The ions present in the saline solution react mechanically to the electrical excitation of the system. They migrate to the regions close to the electrodes, in very thin layers whose parameters vary in non-obvious ways, depending namely on the power supply conditions. The text focuses on electro-hydrodynamic applications in which a flow is generated by electric forces acting on the ions present in the solution, mostly in thin charge layers near the electrodes. Experimental results and simple existing models are first presented for 2D coplanar electrodes systems. Regarding the important differences between models and experimentation, more complete models are then proposed and tested. In spite of the improvements of those new models, some important differences remain, so that a fully decoupled approach of electrical and mechanical aspects is needed, which is pursued on a 1D structure. This new study allows for a better understanding of the dependences of some physical parameters with regard to supply conditions, with a systematic comparison of experimental results and non-linear circuit models results. A frequency approach with Bode diagrams is used, as well as a time approach with Lissajous figures. It has been shown that some phenomena are of practical and fundamental importance, which are not always taken into account in more general and global models : saturation phenomena, non constant physical parameters, border effects,… Practical applications have been deduced and tested experimentally, in the case of micro-mixing. A brief study is also mentioned, concerning the modeling of cells with extremely thin membranes compared to the other characteristic dimensions of the system, in the perspective e.g. of electroporation applications. Another short study is performed about the potential use of « meshless » numerical methods for the solving of this kind of applications, focusing more specifically on the solving of a Poisson problem in 2D.
4

The Effect Of Colloidal Stability On The Heat Transfer Characteristics Of Nanosilica Dispersed Fluids

Venkataraman, Manoj 01 January 2005 (has links)
Addition of nano particles to cooling fluids has shown marked improvement in the heat transfer capabilities. Nanofluids, liquids that contain dispersed nanoparticles, are an emerging class of fluids that have great potential in many applications. There is a need to understand the fundamental behavior of nano dispersed particles with respect to their agglomeration characteristics and how it relates to the heat transfer capability. Such an understanding is important for the development and commercialization of nanofluids. In this work, the stability of nano particles was studied by measuring the zeta potential of colloidal particles, particle concentration and size. Two different sizes of silica nano particles, 10 nm and 20 nm are used in this investigation at 0.2 vol. % and 0.5 vol. % concentrations. The measurements were made in deionized (DI) water, buffer solutions at various pH, DI water plus HCl acid solution (acidic pH) and DI water plus NaOH solution (basic pH). The stability or instability of silica dispersions in these solutions was related to the zeta potential of colloidal particles and confirmed by particle sizing measurements and independently by TEM observations. Low zeta potentials resulted in agglomeration as expected and the measured particle size was greater. The heat transfer characteristics of stable or unstable silica dispersions using the above solutions were experimentally determined by measuring heat flux as a function of temperature differential between a nichrome wire and the surrounding fluid. These experiments allowed the determination of the critical heat flux (CHF), which was then related to the dispersion characteristics of the nanosilica in various fluids described above. The thickness of the diffuse layer on nano particles was computed and experimentally confirmed in selected conditions for which there was no agglomeration. As the thickness of the diffuse layer decreased due to the increase in salt content or the ionic content, the electrostatic force of repulsion cease to exist and Van der Waal's force of agglomeration prevailed causing the particles to agglomerate affecting the CHF. The 10nm size silica particle dispersions showed better heat transfer characteristics compared to 20nm dispersion. It was also observed that at low zeta potential values, where agglomeration prevailed in the dispersion, the silica nano particles had a tendency to deposit on the nickel chromium wire used in CHF experiments. The thickness of the deposition was measured and the results show that with a very high deposition, CHF is enhanced due to the porosity on the wire. The 10nm size silica particles show higher CHF compared to 20nm silica particles. In addition, for both 10nm and 20nm silica particles, 0.5 vol. % concentration yielded higher heat transfer compared to 0.2 vol. % concentration. It is believed that although CHF is significantly increased with nano silica containing fluids compared to pure fluids, formation of particle clusters in unstable slurries will lead to detrimental long time performance, compared to that with stable silica dispersions.
5

Kladná elektroda na bázi MnOx pro PEMFC / MnOx based positeve electrode for PEMFC

Šmídek, Miroslav January 2011 (has links)
Construed bachelor work features into problems hydrogen fuel articles and survey on low-temperature fuell elements with polymeric electrolyte (PEMFC). Basic sight work is study feature catalyzers on base MnOx on real fuel cell type PEMFC. Exit are then measured characteristic this way creation fuel cell.

Page generated in 0.0723 seconds