• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distintas dosis de digestato como acelerador de la degradación de rastrojo de maíz / DIFFERENT DOSES OF DIGESTATE AS ACCELERATOR OF CORN STOVER DEGRADATION / Different doses of digestate as accelerator of corn stover degradation

Merlo Bravo, Camila Ignacia January 2016 (has links)
Memoria para optar al título profesional de Ingeniero Agrónomo / La cosecha de maíz genera alrededor de 10-20 ton ha-1 de rastrojo en la superficie del suelo. La degradación de estos rastrojos puede tardar más de 4 temporadas, debido a su alto contenido ligno-celulósico, sumado a una relación C/N >60/1. La quema de rastrojos constituye una práctica agrícola habitual para despejar el terreno y disponer la preparación del suelo para la siguiente temporada, lo que genera problemas ambientales como pérdida de nutrientes, erosión del suelo, pérdida de materia orgánica y contaminación atmosférica por emisión de gases efecto invernadero y material particulado. Una alternativa a la quema es provocar una rápida degradación de este material, de modo de dejarlo en condiciones de ser incorporado al suelo, mediante el uso de digestato líquido, proveniente de biodigestores anaeróbicos, el cual contiene abundantes consorcios microbianos especializados en la degradación de moléculas orgánicas.
2

Produção de biogás e recuperação de nutrientes a partir da biodegradação de dejetos suínos / Biogas production and nutrient recovery from biodegradation of swine manure

Oliveira Filho, José de Souza January 2016 (has links)
OLIVEIRA FILHO, José de Souza. Produção de biogás e recuperação de nutrientes a partir da biodegradação de dejetos suínos. 2016. 82 f. Tese (Doutorado em Solos e Nutrição de Plantas)-Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Jairo Viana (jairo@ufc.br) on 2016-08-24T23:48:00Z No. of bitstreams: 1 2016_tese_jsoliveirafilho.pdf: 1670705 bytes, checksum: ae1b349cbca31f210b1d75dedc23e985 (MD5) / Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2016-08-25T18:27:11Z (GMT) No. of bitstreams: 1 2016_tese_jsoliveirafilho.pdf: 1670705 bytes, checksum: ae1b349cbca31f210b1d75dedc23e985 (MD5) / Made available in DSpace on 2016-08-25T18:27:11Z (GMT). No. of bitstreams: 1 2016_tese_jsoliveirafilho.pdf: 1670705 bytes, checksum: ae1b349cbca31f210b1d75dedc23e985 (MD5) Previous issue date: 2016 / The production of renewable energy and fertilizer, through anaerobic biodegradation (AnBio) of waste from pig farming, presents itself as a strategic solution to minimize the negative effects associated with the large volume of manure generated in a small production space. However, further studies should be conducted to improve the understanding on the process and propose improvements. In this sense, this work was divided into three stages. In the first stage, a study was conducted to evaluate the changes that occur in organic matter and in organic and inorganic forms of nitrogen (N) and phosphorus (P) of the solid fraction of pig manure (PM) using anaerobic bench-top reactors as a function of seven hydraulic retention times (7, 14, 21, 28, 35, 42 and 49 days of biodegradation) and compared with the raw manure. In the second stage, we developed a study of anaerobic co-digestion, in a semi-continuous reactor, using the PM and the industrial waste of tomato processing (WTP) at different mixing ratios, to improve the performance of digestion and establish the best ratio of the two substrates for the production of biogas and methane. The following proportions were used (% PM + % WTP): 10% + 90%, 20% + 80%, 30% + 70%, 50% + 50% and 40% + 60%. In the third stage, there was an innovative study to recover the N present in the digestate generated after AnBio, using semipermeable membranes made of expanded polytetrafluoroethylene (PTFE) submerged in the material. This system consists of forcing the volatilization of N present in the digestate in the form of NH3 and then recover it in an acid solution of 1N H2SO4 flowing through the inside of the PTFE membrane. The N is recovered as the ammonium ion (NH4+), with potential for being used as fertilizer. Besides the digestate, raw pig manure (RPM) was used to compare the N recovery potential of both materials. The accumulation of the NH4+ formed was determined at nine sampling times (0, 7, 20, 30, 44, 54, 70, 79 and 93 hours). Based on the results obtained in the first stage, it was concluded that, during the digestion process, the organic matter of higher lability, represented by the carbon of the fulvic acid fraction and carbon oxidizable with 2.5 mL of H2SO4, was partially consumed, promoting the accumulation of recalcitrant organic matter at the end of the process. The contents of organic N and NH4+ reduced respectively by 45.2% and 54.2%, compared with their initial contents in the RPM, probably due to loss by volatilization. The P content reduced by 41.25% in relation to the initial content, due to the chemical precipitation of the inorganic fraction extractable in water with metallic cations within the reactor. In the case of co-digestion, increasing PM proportion to up to 30% of the feed mixture led to the maximum daily production of biogas (175 L) and the largest proportion of methane (60%). Amounts above 30% of manure in the mixture reduced biogas and methane production due to the increase of free NH3 concentration (272 mg L-1), which is toxic to most methanogens. As regards the recovery of N using PTFE membranes, it was observed that the recovery efficiency of the digestate was 12% higher compared with that observed in the RPM. Quantitatively, 4555 mg NH4+ could be recovered from the digestate in 93 hours of experiment, which can be used later as a source of N to agricultural crops. / A produção de energia renovável e fertilizante, através da biodegradação anaeróbia (BioAn) dos dejetos da suinocultura, apresenta-se como uma solução estratégica para minimizar os efeitos negativos associados ao grande volume de dejeto gerado em um reduzido espaço de produção. Contudo, mais estudos devem ser realizados para melhorar o entendimento do processo e propor melhorias. Nesse sentido, realizou-se este trabalho que foi dividido em três etapas. Na primeira, foi realizado um estudo com o objetivo de avaliar as mudanças que ocorrem na matéria orgânica e nas formas orgânicas e inorgânicas de nitrogênio (N) e fósforo (P) da fração sólida do dejeto suíno (DS), utilizando reatores anaeróbios de bancada, em função de sete tempos de retenção hidráulica (7, 14, 21, 28, 35, 42 e 49 dias de biodegradação) e comparados com o dejeto não degradado. Na segunda etapa, desenvolveu-se um estudo de co-digestão anaeróbia, em um reator semicontínuo, utilizando o DS e o resíduo da indústria do processamento do tomate (RPT) em diferentes proporções de mistura, visando melhorar o desempenho da biodegradação e estabelecer a melhor proporção dos dois substratos para a produção de biogás e metano. Utilizaram-se as seguintes proporções (% de DS + % de RPT): 10% + 90%, 20% + 80%, 30% + 70%, 50% + 50% e 60% + 40%. Na terceira etapa, realizou-se um estudo inovador visando recuperar o N presente no digestato gerado após a biodegradação, utilizando membranas semipermeáveis de politetrafluoroetileno expandido (PTFE) submersas no material. Esse sistema consistiu em forçar a volatilização do N presente no digestato na forma de NH3 e, posteriormente, recuperá-lo em uma solução ácida de H2SO4 1N que circulava pelo interior da membrana de PTFE. O N foi recuperado na forma do íon amônio (NH4+), com potencial para ser utilizado como fertilizante. Utilizou-se além do digestato, DS não degradado, para comparação do potencial de recuperação de N dos dois materiais. A determinação do acúmulo de NH4+ formado foi realizada em nove tempos de amostragem (0, 7, 20, 30, 44, 54, 70, 79 e 93 horas). Com base nos resultados obtidos na etapa 1, concluiu-se que durante a biodegradação, a matéria orgânica de maior labilidade, representada pelo carbono da fração ácido fúlvico e carbono oxidável com 2,5 mL de H2SO4, foi parcialmente consumida, promovendo o acúmulo de matéria orgânica recalcitrante no final do processo. Os conteúdos de N orgânico e NH4+ reduziram respectivamente, 45,2% e 54,2% em relação aos seus conteúdos iniciais no dejeto não degradado, devido, provavelmente, a perda por volatilização. O conteúdo de P reduziu 41,25% em relação ao seu conteúdo inicial, devido à precipitação química da fração inorgânica extraível em água com cátions metálicos no interior do reator. No caso da co-digestão, o aumento da proporção do DS até o limite de 30% da mistura de alimentação, proporcionou a máxima produção diária de biogás (175 L) e a maior proporção de metano (60%). Quantidades superiores a 30% de dejeto na mistura, reduziram a produção de biogás e metano devido ao aumento da concentração de NH3 Livre (272 mg L-1) tóxico a maioria dos microrganismos metanogênicos. No que se refere à recuperação do N utilizando as membranas de PTFE, observou-se que a eficiência de recuperação no digestato foi superior em 12% em relação ao observado no dejeto não degradado. Em termos quantitativos, conseguiu-se recuperar 4555 mg de NH4+ proveniente do digestato durante 93 horas de experimento que poderá, posteriormente, ser utilizado como fonte de N para as culturas agrícolas.
3

Biogas production and nutrient recovery from biodegradation of swine manure / ProduÃÃo de biogÃs e recuperaÃÃo de nutrientes a partir da biodegradaÃÃo de dejetos suÃnos

Josà de Souza Oliveira Filho 24 February 2016 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / The production of renewable energy and fertilizer, through anaerobic biodegradation (AnBio) of waste from pig farming, presents itself as a strategic solution to minimize the negative effects associated with the large volume of manure generated in a small production space. However, further studies should be conducted to improve the understanding on the process and propose improvements. In this sense, this work was divided into three stages. In the first stage, a study was conducted to evaluate the changes that occur in organic matter and in organic and inorganic forms of nitrogen (N) and phosphorus (P) of the solid fraction of pig manure (PM) using anaerobic bench-top reactors as a function of seven hydraulic retention times (7, 14, 21, 28, 35, 42 and 49 days of biodegradation) and compared with the raw manure. In the second stage, we developed a study of anaerobic co-digestion, in a semi-continuous reactor, using the PM and the industrial waste of tomato processing (WTP) at different mixing ratios, to improve the performance of digestion and establish the best ratio of the two substrates for the production of biogas and methane. The following proportions were used (% PM + % WTP): 10% + 90%, 20% + 80%, 30% + 70%, 50% + 50% and 40% + 60%. In the third stage, there was an innovative study to recover the N present in the digestate generated after AnBio, using semipermeable membranes made of expanded polytetrafluoroethylene (PTFE) submerged in the material. This system consists of forcing the volatilization of N present in the digestate in the form of NH3 and then recover it in an acid solution of 1N H2SO4 flowing through the inside of the PTFE membrane. The N is recovered as the ammonium ion (NH4+), with potential for being used as fertilizer. Besides the digestate, raw pig manure (RPM) was used to compare the N recovery potential of both materials. The accumulation of the NH4+ formed was determined at nine sampling times (0, 7, 20, 30, 44, 54, 70, 79 and 93 hours). Based on the results obtained in the first stage, it was concluded that, during the digestion process, the organic matter of higher lability, represented by the carbon of the fulvic acid fraction and carbon oxidizable with 2.5 mL of H2SO4, was partially consumed, promoting the accumulation of recalcitrant organic matter at the end of the process. The contents of organic N and NH4+ reduced respectively by 45.2% and 54.2%, compared with their initial contents in the RPM, probably due to loss by volatilization. The P content reduced by 41.25% in relation to the initial content, due to the chemical precipitation of the inorganic fraction extractable in water with metallic cations within the reactor. In the case of co-digestion, increasing PM proportion to up to 30% of the feed mixture led to the maximum daily production of biogas (175 L) and the largest proportion of methane (60%). Amounts above 30% of manure in the mixture reduced biogas and methane production due to the increase of free NH3 concentration (272 mg L-1), which is toxic to most methanogens. As regards the recovery of N using PTFE membranes, it was observed that the recovery efficiency of the digestate was 12% higher compared with that observed in the RPM. Quantitatively, 4555 mg NH4+ could be recovered from the digestate in 93 hours of experiment, which can be used later as a source of N to agricultural crops. / A produÃÃo de energia renovÃvel e fertilizante, atravÃs da biodegradaÃÃo anaerÃbia (BioAn) dos dejetos da suinocultura, apresenta-se como uma soluÃÃo estratÃgica para minimizar os efeitos negativos associados ao grande volume de dejeto gerado em um reduzido espaÃo de produÃÃo. Contudo, mais estudos devem ser realizados para melhorar o entendimento do processo e propor melhorias. Nesse sentido, realizou-se este trabalho que foi dividido em trÃs etapas. Na primeira, foi realizado um estudo com o objetivo de avaliar as mudanÃas que ocorrem na matÃria orgÃnica e nas formas orgÃnicas e inorgÃnicas de nitrogÃnio (N) e fÃsforo (P) da fraÃÃo sÃlida do dejeto suÃno (DS), utilizando reatores anaerÃbios de bancada, em funÃÃo de sete tempos de retenÃÃo hidrÃulica (7, 14, 21, 28, 35, 42 e 49 dias de biodegradaÃÃo) e comparados com o dejeto nÃo degradado. Na segunda etapa, desenvolveu-se um estudo de co-digestÃo anaerÃbia, em um reator semicontÃnuo, utilizando o DS e o resÃduo da indÃstria do processamento do tomate (RPT) em diferentes proporÃÃes de mistura, visando melhorar o desempenho da biodegradaÃÃo e estabelecer a melhor proporÃÃo dos dois substratos para a produÃÃo de biogÃs e metano. Utilizaram-se as seguintes proporÃÃes (% de DS + % de RPT): 10% + 90%, 20% + 80%, 30% + 70%, 50% + 50% e 60% + 40%. Na terceira etapa, realizou-se um estudo inovador visando recuperar o N presente no digestato gerado apÃs a biodegradaÃÃo, utilizando membranas semipermeÃveis de politetrafluoroetileno expandido (PTFE) submersas no material. Esse sistema consistiu em forÃar a volatilizaÃÃo do N presente no digestato na forma de NH3 e, posteriormente, recuperÃ-lo em uma soluÃÃo Ãcida de H2SO4 1N que circulava pelo interior da membrana de PTFE. O N foi recuperado na forma do Ãon amÃnio (NH4+), com potencial para ser utilizado como fertilizante. Utilizou-se alÃm do digestato, DS nÃo degradado, para comparaÃÃo do potencial de recuperaÃÃo de N dos dois materiais. A determinaÃÃo do acÃmulo de NH4+ formado foi realizada em nove tempos de amostragem (0, 7, 20, 30, 44, 54, 70, 79 e 93 horas). Com base nos resultados obtidos na etapa 1, concluiu-se que durante a biodegradaÃÃo, a matÃria orgÃnica de maior labilidade, representada pelo carbono da fraÃÃo Ãcido fÃlvico e carbono oxidÃvel com 2,5 mL de H2SO4, foi parcialmente consumida, promovendo o acÃmulo de matÃria orgÃnica recalcitrante no final do processo. Os conteÃdos de N orgÃnico e NH4+ reduziram respectivamente, 45,2% e 54,2% em relaÃÃo aos seus conteÃdos iniciais no dejeto nÃo degradado, devido, provavelmente, a perda por volatilizaÃÃo. O conteÃdo de P reduziu 41,25% em relaÃÃo ao seu conteÃdo inicial, devido à precipitaÃÃo quÃmica da fraÃÃo inorgÃnica extraÃvel em Ãgua com cÃtions metÃlicos no interior do reator. No caso da co-digestÃo, o aumento da proporÃÃo do DS atà o limite de 30% da mistura de alimentaÃÃo, proporcionou a mÃxima produÃÃo diÃria de biogÃs (175 L) e a maior proporÃÃo de metano (60%). Quantidades superiores a 30% de dejeto na mistura, reduziram a produÃÃo de biogÃs e metano devido ao aumento da concentraÃÃo de NH3 Livre (272 mg L-1) tÃxico a maioria dos microrganismos metanogÃnicos. No que se refere à recuperaÃÃo do N utilizando as membranas de PTFE, observou-se que a eficiÃncia de recuperaÃÃo no digestato foi superior em 12% em relaÃÃo ao observado no dejeto nÃo degradado. Em termos quantitativos, conseguiu-se recuperar 4555 mg de NH4+ proveniente do digestato durante 93 horas de experimento que poderÃ, posteriormente, ser utilizado como fonte de N para as culturas agrÃcolas.
4

Biodigestão anaeróbia de cama de aviário com recirculação de digestato / Anaerobic digestion of poultry litter with recycling effluent

Alcantara, Michael Steinhorst 11 February 2016 (has links)
Made available in DSpace on 2017-07-10T19:24:10Z (GMT). No. of bitstreams: 1 Michael_ S A.pdf: 2204905 bytes, checksum: 95f172e9117213f43a2e88631cfe2b2b (MD5) Previous issue date: 2016-02-11 / Poultry farming has increased and so does the amount of residues from producing areas with poultry litter and dead broilers, consequently, there is a major environmental problem for the poultry industry. Poultry litter, rich in organic matter, commonly applied on soil without treatment, acidifies it by releasing hydrogen ions since it stabilizes organic matter and also because it is a nitrogen fertilizer. Therefore, other applications for poultry litter are needed and should be studied, as for example, its use for power generation by anaerobic digestion. This process is attractive for the sector by treating waste and generating biogas that may replace the energy used in poultry. There is, however, an environmental restriction to this system because it requires a large amount of water to hydrolyze poultry litter. Therefore, this study has evaluated the anaerobic digestion of poultry litter in a digester built with glass fiber boxes whose total volume was 40.0 m3. There was a system of effluent reuse from the digester to dilute its next feeding and reduce water consumption during this process. The effluent was reused with its recirculation at the feeding moment with a motor pump, in a semi-continuous system (once a day). The anaerobic digestion has been stabilized at the organic feeding charges of 0.5 and 1.0 kg total volatile solids by m3 digester, so, the evaluations 1 and 2 were created, respectively. There was a hydraulic retention time of 10 days for both evaluations. The stabilization process occurred by Shewhart charts while the process analysis occurred by the process capacity and operational energy viability of the system indexes. At the evaluation number 2, the process was capable and viable for power operations, whose energy production as methane was 4.41 times superior to the electric energy consumed on operations of the treating system, 0.0182 m3 methane kg-1 VTS-1added. The produced effluent was not characterized as an adequate biofertilizer for crop yield because it showed small amounts of nutrients content. On the other hand, the sludge is available as organic manure since a great amount of nutrients has sedimented on the bottom of the digester. At the final period, after evaluation number 2, the digester and motor pump did not present any adequate feeding flux due to the large content of solids in the effluent; so, it was not possible to operate the digester. However, pH (close to 7.00) and the ratio between volatile acidity and total alkalinity of the effluent (below 0.3) at the final period indicated that anaerobic digestion showed some potential to be continued. This fact highlights the importance of other studies about dilution of poultry litter mechanism on the effluent of digester / O crescimento da produção de frangos tem concentrado resíduos nas regiões produtoras, cama de aviário e aves mortas, gerando um grande problema ambiental para a indústria avícola. A cama de aviário, rica em matéria orgânica, comumente aplicada no solo sem tratamento, acidifica o mesmo por liberar íons de hidrogênio ao estabilizar sua matéria orgânica e por ser um fertilizante nitrogenado. Portanto, outras aplicações para a cama de aviário são necessárias e devem ser estudadas, como o seu uso para geração de energia pela biodigestão anaeróbia. Este processo é um atrativo para o setor por tratar o resíduo e gerar biogás que pode substituir a energia usada na criação dos frangos. Existe, porém, um entrave ambiental neste sistema por necessitar de grande quantidade de água para hidrolisar a cama de aviário. Por isso, esse trabalho avaliou a biodigestão anaeróbia da cama de aviário em um biodigestor construído com caixas de fibra de vidro no volume total de 40 m3 com sistema de reutilização do digestato do biodigestor na diluição da próxima alimentação, para reduzir o consumo de água no processo. O digestato foi reutilizado pela recirculação do mesmo no momento da alimentação do biodigestor com uma motobomba, em sistema semi-contínuo (uma vez ao dia). A biodigestão anaeróbia foi estabilizada nas cargas orgânicas de alimentação de 0,5 e 1,0 kg sólidos totais voláteis por m3 de biodigestor, para a construção das avaliações 1 e 2, respectivamente. O tempo de retenção hidráulica foi de 10 dias para as duas avaliações. A estabilização procedeu-se pelo gráfico de Shewhart e a análise do processo pelo índice de capacidade do processo e pelo índice de viabilidade energética operacional do sistema. Na avaliação 2, o processo se apresentou como capaz e viável nas operações energéticas, com produção de energia na forma de metano 4,41 vezes maior que a energia elétrica gasta nas operações do sistema de tratamento, sendo 0,0182 m3 metano kg-1 STV-1adicionados. O digestato produzido não se caracterizou como biofertilizante adequado para as culturas por ter pequeno teor de nutrientes. Porém, o lodo é aplicável como adubo orgânico devido à grande parte dos nutrientes ter sedimentado no biodigestor. No período final, após a avaliação 2, o biodigestor e a motobomba não apresentaram mais fluxo de alimentação devido à quantidade de sólidos no digestato e por este motivo, não se conseguiu mais operar o biodigestor. No entanto, o pH (próximo a 7,00) e a relação entre a acidez volátil e a alcalinidade total do digestato (abaixo de 0,3) no período final indicavam que a biodigestão anaeróbia tinha potencial para ser continuada. Tal fato ressalta a importância de outros estudos sobre mecanismos de diluição da cama de aviário no afluente do biodigestor.
5

Biodigestão anaeróbia de cama de aviário com recirculação de digestato / Anaerobic digestion of poultry litter with recycling effluent

Alcantara, Michael Steinhorst 11 February 2016 (has links)
Made available in DSpace on 2017-05-12T14:47:27Z (GMT). No. of bitstreams: 1 Michael_ S A.pdf: 2204905 bytes, checksum: 95f172e9117213f43a2e88631cfe2b2b (MD5) Previous issue date: 2016-02-11 / Poultry farming has increased and so does the amount of residues from producing areas with poultry litter and dead broilers, consequently, there is a major environmental problem for the poultry industry. Poultry litter, rich in organic matter, commonly applied on soil without treatment, acidifies it by releasing hydrogen ions since it stabilizes organic matter and also because it is a nitrogen fertilizer. Therefore, other applications for poultry litter are needed and should be studied, as for example, its use for power generation by anaerobic digestion. This process is attractive for the sector by treating waste and generating biogas that may replace the energy used in poultry. There is, however, an environmental restriction to this system because it requires a large amount of water to hydrolyze poultry litter. Therefore, this study has evaluated the anaerobic digestion of poultry litter in a digester built with glass fiber boxes whose total volume was 40.0 m3. There was a system of effluent reuse from the digester to dilute its next feeding and reduce water consumption during this process. The effluent was reused with its recirculation at the feeding moment with a motor pump, in a semi-continuous system (once a day). The anaerobic digestion has been stabilized at the organic feeding charges of 0.5 and 1.0 kg total volatile solids by m3 digester, so, the evaluations 1 and 2 were created, respectively. There was a hydraulic retention time of 10 days for both evaluations. The stabilization process occurred by Shewhart charts while the process analysis occurred by the process capacity and operational energy viability of the system indexes. At the evaluation number 2, the process was capable and viable for power operations, whose energy production as methane was 4.41 times superior to the electric energy consumed on operations of the treating system, 0.0182 m3 methane kg-1 VTS-1added. The produced effluent was not characterized as an adequate biofertilizer for crop yield because it showed small amounts of nutrients content. On the other hand, the sludge is available as organic manure since a great amount of nutrients has sedimented on the bottom of the digester. At the final period, after evaluation number 2, the digester and motor pump did not present any adequate feeding flux due to the large content of solids in the effluent; so, it was not possible to operate the digester. However, pH (close to 7.00) and the ratio between volatile acidity and total alkalinity of the effluent (below 0.3) at the final period indicated that anaerobic digestion showed some potential to be continued. This fact highlights the importance of other studies about dilution of poultry litter mechanism on the effluent of digester / O crescimento da produção de frangos tem concentrado resíduos nas regiões produtoras, cama de aviário e aves mortas, gerando um grande problema ambiental para a indústria avícola. A cama de aviário, rica em matéria orgânica, comumente aplicada no solo sem tratamento, acidifica o mesmo por liberar íons de hidrogênio ao estabilizar sua matéria orgânica e por ser um fertilizante nitrogenado. Portanto, outras aplicações para a cama de aviário são necessárias e devem ser estudadas, como o seu uso para geração de energia pela biodigestão anaeróbia. Este processo é um atrativo para o setor por tratar o resíduo e gerar biogás que pode substituir a energia usada na criação dos frangos. Existe, porém, um entrave ambiental neste sistema por necessitar de grande quantidade de água para hidrolisar a cama de aviário. Por isso, esse trabalho avaliou a biodigestão anaeróbia da cama de aviário em um biodigestor construído com caixas de fibra de vidro no volume total de 40 m3 com sistema de reutilização do digestato do biodigestor na diluição da próxima alimentação, para reduzir o consumo de água no processo. O digestato foi reutilizado pela recirculação do mesmo no momento da alimentação do biodigestor com uma motobomba, em sistema semi-contínuo (uma vez ao dia). A biodigestão anaeróbia foi estabilizada nas cargas orgânicas de alimentação de 0,5 e 1,0 kg sólidos totais voláteis por m3 de biodigestor, para a construção das avaliações 1 e 2, respectivamente. O tempo de retenção hidráulica foi de 10 dias para as duas avaliações. A estabilização procedeu-se pelo gráfico de Shewhart e a análise do processo pelo índice de capacidade do processo e pelo índice de viabilidade energética operacional do sistema. Na avaliação 2, o processo se apresentou como capaz e viável nas operações energéticas, com produção de energia na forma de metano 4,41 vezes maior que a energia elétrica gasta nas operações do sistema de tratamento, sendo 0,0182 m3 metano kg-1 STV-1adicionados. O digestato produzido não se caracterizou como biofertilizante adequado para as culturas por ter pequeno teor de nutrientes. Porém, o lodo é aplicável como adubo orgânico devido à grande parte dos nutrientes ter sedimentado no biodigestor. No período final, após a avaliação 2, o biodigestor e a motobomba não apresentaram mais fluxo de alimentação devido à quantidade de sólidos no digestato e por este motivo, não se conseguiu mais operar o biodigestor. No entanto, o pH (próximo a 7,00) e a relação entre a acidez volátil e a alcalinidade total do digestato (abaixo de 0,3) no período final indicavam que a biodigestão anaeróbia tinha potencial para ser continuada. Tal fato ressalta a importância de outros estudos sobre mecanismos de diluição da cama de aviário no afluente do biodigestor.

Page generated in 0.0571 seconds