• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative Learning Control and Adaptive Control for Systems with Unstable Discrete-Time Inverse

Wang, Bowen January 2019 (has links)
Iterative Learning Control (ILC) considers systems which perform the given desired trajectory repetitively. The command for the upcoming iteration is updated after every iteration based on the previous recorded error, aiming to converge to zero error in the real-world. Iterative Learning Control can be considered as an inverse problem, solving for the needed input that produces the desired output. However, digital control systems need to convert differential equations to digital form. For a majority of real world systems this introduces one or more zeros of the system z-transfer function outside the unit circle making the inverse system unstable. The resulting control input that produces zero error at the sample times following the desired trajectory is unstable, growing exponentially in magnitude each time step. The tracking error between time steps is also growing exponentially defeating the intended objective of zero tracking error. One way to address the instability in the inverse of non-minimum phase systems is to use basis functions. Besides addressing the unstable inverse issue, using basis functions also has several other advantages. First, it significantly reduces the computation burden in solving for the input command, as the number of basis functions chosen is usually much smaller than the number of time steps in one iteration. Second, it allows the designer to choose the frequency to cut off the learning process, which provides stability robustness to unmodelled high frequency dynamics eliminating the need to otherwise include a low-pass filter. In addition, choosing basis functions intelligently can lead to fast convergence of the learning process. All these benefits come at the expense of no longer asking for zero tracking error, but only aiming to correct the tracking error in the span of the chosen basis functions. Two kinds of matched basis functions are presented in this dissertation, frequency-response based basis functions and singular vector basis functions, respectively. In addition, basis functions are developed to directly capture the system transients that result from initial conditions and hence are not associated with forcing functions. The newly developed transient basis functions are particularly helpful in reducing the level of tracking error and constraining the magnitude of input control when the desired trajectory does not have a smooth start-up, corresponding to a smooth transition from the system state before the initial time, and the system state immediately after time zero on the desired trajectory. Another topic that has been investigated is the error accumulation in the unaddressed part of the output space, the part not covered by the span of the output basis functions, under different model conditions. It has been both proved mathematically and validated by numerical experiments that the error in the unaddressed space will remain constant when using an error-free model, and the unaddressed error will demonstrate a process of accumulation and finally converge to a constant level in the presence of model error. The same phenomenon is shown to apply when using unmatched basis functions. There will be unaddressed error accumulation even in the absence of model error, suggesting that matched basis functions should be used whenever possible. Another way to address the often unstable nature of the inverse of non-minimum phase systems is to use the in-house developed stable inverse theory Longman JiLLL, which can also be incorporated into other control algorithms including One-Step Ahead Control and Indirect Adaptive Control in addition to Iterative Learning Control. Using this stable inverse theory, One-Step Ahead Control has been generalized to apply to systems whose discrete-time inverses are unstable. The generalized one-step ahead control can be viewed as a Model Predictive Control that achieves zero tracking error with a control input bounded by the actuator constraints. In situations where one feels not confident about the system model, adaptive control can be applied to update the model parameters while achieving zero tracking error.
2

New Stable Inverses of Linear Discrete Time Systems and Application to Iterative Learning Control

Ji, Xiaoqiang January 2019 (has links)
Digital control needs discrete time models, but conversion from continuous time, fed by a zero order hold, to discrete time introduces sampling zeros which are outside the unit circle, i.e. non-minimum phase (NMP) zeros, in the majority of the systems. Also, some systems are already NMP in continuous time. In both cases, the inverse problem to find the input required to maintain a desired output tracking, produces an unstable causal control action. The control action will grow exponentially every time step, and the error between time steps also grows exponentially. This prevents many control approaches from making use of inverse models. The problem statement for the existing stable inverse theorem is presented in this work, and it aims at finding a bounded nominal state-input trajectory by solving a two-point boundary value problem obtained by decomposing the internal dynamics of the system. This results in the causal part specified from the minus infinity time; and its non-causal part from the positive infinity time. By solving for the nominal bounded internal dynamics, the exact output tracking is achieved in the original finite time interval. The new stable inverses concepts presented and developed here address this instability problem in a different way based on the modified versions of problem states, and in a way that is more practical for implementation. The statements of how the different inverse problems are posed is presented, as well as the calculation and implementation. In order to produce zero tracking error at the addressed time steps, two modified statements are given as the initial delete and the skip step. The development presented here involves: (1) The detection of the signature of instability in both the nonhomogeneous difference equation and matrix form for finite time problems. (2) Create a new factorization of the system separating maximum part from minimum part in matrix form as analogous to transfer function format, and more generally, modeling the behavior of finite time zeros and poles. (3) Produce bounded stable inverse solutions evolving from the minimum Euclidean norm satisfying different optimization objective functions, to the solution having no projection on transient solutions terms excited by initial conditions. Iterative Learning Control (ILC) iterates with a real world control system repeatedly performing the same task. It adjusts the control action based on error history from the previous iteration, aiming to converge to zero tracking error. ILC has been widely used in various applications due to its high precision in trajectory tracking, e.g. semiconductor manufacturing sensors that repeatedly perform scanning maneuvers. Designing effective feedback controllers for non-minimum phase (NMP) systems can be challenging. Applying Iterative Learning Control (ILC) to NMP systems is particularly problematic. Incorporating the initial delete stable inverse thinkg into ILC, the control action obtained in the limit as the iterations tend to infinity, is a function of the tracking error produced by the command in the initial run. It is shown here that this dependence is very small, so that one can reasonably use any initial run. By picking an initial input that goes to zero approaching the final time step, the influence becomes particularly small. And by simply commanding zero in the first run, the resulting converged control minimizes the Euclidean norm of the underdetermined control history. Three main classes of ILC laws are examined, and it is shown that all ILC laws converge to the identical control history, as the converged result is not a function of the ILC law. All of these conclusions apply to ILC that aims to track a given finite time trajectory, and also apply to ILC that in addition aims to cancel the effect of a disturbance that repeats each run. Having these stable inverses opens up opportunities for many control design approaches. (1) ILC was the original motivation of the new stable inverses. Besides the scenario using the initial delete above, consider ILC to perform local learning in a trajectory, by using a quadratic cost control in general, but phasing into the skip step stable inverse for some portion of the trajectory that needs high precision tracking. (2) One step ahead control uses a model to compute the control action at the current time step to produce the output desired at the next time step. Before it can be useful, it must be phased in to honor actuator saturation limits, and being a true inverse it requires that the system have a stable inverse. One could generalize this to p-step ahead control, updating the control action every p steps instead of every one step. It determines how small p can be to give a stable implementation using skip step, and it can be quite small. So it only requires knowledge of future desired control for a few steps. (3) Note that the statement in (2) can be reformulated as Linear Model Predictive Control that updates every p steps instead of every step. This offers the ability to converge to zero tracking error at every time step of the skip step inverse, instead of the usual aim to converge to a quadratic cost solution. (4) Indirect discrete time adaptive control combines one step ahead control with the projection algorithm to perform real time identification updates. It has limited applications, because it requires a stable inverse.
3

Development of a soft-core based power electronic conversion controller

Nsumbu, Cassandra Daviane January 2014 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2014. / The application of digital control techniques has become dominant in power electronics owing to several advantages they present, when compared to analogue solutions. Their development is based on the use of microprocessors and microcontrollers, such as Application Specific Integrated Circuit (ASIC), Digital signal processors (DSP), Field Programmable Gate Arrays (FPGA), or a combination of these devices. This thesis presents an investigation of a soft-core based FPGA control system as a solution for power electronic applications. The aim was the development and implementation of a conversion controller, which purpose is to supply control inputs in the form of digital Pulse Width Modulation (PWM) signals, to a number of power electronic applications, such as single half and full bridge DC-DC converters, three phase and multicell inverters. The PWM control technique is achieved via their power semiconductor switching devices. These PWM control signals are necessary for the high frequency conversion of an analog input voltage (AC, DC or unregulated) to an analog output voltage of another level (AC or DC). This was intended to be achieved by exploiting and combining the advantages that FPGA and embedded processors provide such as high reconfigurability and multipurpose ability. This controller’s digital outputs, namely PWM switching signals, can be directly delivered to an analog signal amplification circuit to create an adequate voltage level before being processed by the converters’ switches.
4

Design And Analysis Of Digital Controllers For High Performance Sensorless PMSM Servo Drives

Lourde, R Mary 10 1900 (has links) (PDF)
No description available.

Page generated in 0.0827 seconds