• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low-power High-speed 8-bit Pipelining CLA Design Using Dual Threshold Voltage Domino Logic and Low-cost Digital I/Q Separator for DVB-T

Cheng, Tsai-Wen 10 July 2006 (has links)
This thesis includes two topics. One is a low-power high-speed 8-bit pipelining CLA design using dual threshold voltage (dual- Vth) domino logic. The other is a low-cost digital I/Q separator for DVB-T receivers. A high speed and low power 8-bit CLA using dual- Vth domino logic blocks arranged in a PLA-like style with pipelining is presented. According to parallely precharge and sequentially evaluate in a cascaded set of domino logic blocks, transistors in the precharge part and the evaluation part of dual- Vth domino logic are, respectively, replaced by high Vth transistors to reduce subthreshold leakage current through OFF transistors, and low Vth transistors. Moreover, an nMOS transistor is inserted in the precharge phase of the output inverter such that the two-phase dual- Vth domino logic can be properly applied in a pipeline structure. Consequently, the proposed design keeps the advantage of high speed while attaining the effect of low power dissipation. A low-cost digital I/Q separator is presented in the second part of this thesis. Using digital I/Q separator in place of the traditional analog I/Q separator guarantees the design conquer gain and phase mismatch problems between the I and Q channels. The proposed design can berealized by inverters and shifters such that the goal of low cost can be achieved.

Page generated in 0.0574 seconds