• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Secure and efficient post-quantum cryptographic digital signature algorithms

Mahmoud, Mahmoud Yehia Ahmed 24 August 2021 (has links)
Cryptographic digital signatures provide authentication to communicating parties over communication networks. They are integral asymmetric primitives in cryptography. The current digital signature infrastructure adopts schemes that rely on the hardness of finding discrete logarithms and factoring in finite groups. Given the recent advances in physics which point towards the eventual construction of large scale quantum computers, these hard problems will be solved in polynomial time using Shor’s algorithm. Hence, there is a clear need to migrate the cryptographic infrastructure to post-quantum secure alternatives. Such an initiative is demonstrated by the PQCRYPTO project and the current Post-Quantum Cryptography (PQC) standardization competition run by the National Institute of Standards and Technology (NIST). This dissertation considers hash-based digital signature schemes. Such algorithms rely on simple security notions such as preimage, and weak and strong collision resistances of hash functions. These notions are well-understood and their security against quantum computers has been well-analyzed. However, existing hash-based signature schemes have large signature sizes and high computational costs. Moreover, the signature size increases with the number of messages to be signed by a key pair. The goal of this work is to develop hash-based digital signature schemes to overcome the aforementioned limitations. First, FORS, the underlying few-time signature scheme of the NIST PQC alternate candidate SPHINCS+ is analyzed against adaptive chosen message attacks, and DFORS, a few-time signature scheme with adaptive chosen message security, is proposed. Second, a new variant of SPHINCS+ is introduced that improves the computational cost and security level. Security analysis for the new variant is presented. In addition, the hash-based group digital signature schemes, Group Merkle (GM) and Dynamic Group Merkle (DGM), are studied and their security is analyzed. Group Merkle Multi-Treem (GMMT) is proposed to solve some of the limitations of the GM and DGM hash-based group signature schemes. / Graduate
2

Direct Online/Offline Digital Signature Schemes.

Yu, Ping 12 1900 (has links)
Online/offline signature schemes are useful in many situations, and two such scenarios are considered in this dissertation: bursty server authentication and embedded device authentication. In this dissertation, new techniques for online/offline signing are introduced, those are applied in a variety of ways for creating online/offline signature schemes, and five different online/offline signature schemes that are proved secure under a variety of models and assumptions are proposed. Two of the proposed five schemes have the best offline or best online performance of any currently known technique, and are particularly well-suited for the scenarios that are considered in this dissertation. To determine if the proposed schemes provide the expected practical improvements, a series of experiments were conducted comparing the proposed schemes with each other and with other state-of-the-art schemes in this area, both on a desktop class computer, and under AVR Studio, a simulation platform for an 8-bit processor that is popular for embedded systems. Under AVR Studio, the proposed SGE scheme using a typical key size for the embedded device authentication scenario, can complete the offline phase in about 24 seconds and then produce a signature (the online phase) in 15 milliseconds, which is the best offline performance of any known signature scheme that has been proven secure in the standard model. In the tests on a desktop class computer, the proposed SGS scheme, which has the best online performance and is designed for the bursty server authentication scenario, generated 469,109 signatures per second, and the Schnorr scheme (the next best scheme in terms of online performance) generated only 223,548 signatures. The experimental results demonstrate that the SGE and SGS schemes are the most efficient techniques for embedded device authentication and bursty server authentication, respectively.

Page generated in 0.0884 seconds