• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A class of weighted Bergman spaces, reducing subspaces for multiple weighted shifts, and dilatable operators

Liang, Xiaoming 14 August 2006 (has links)
This thesis consists of four chapters. Chapter 1 contains the preliminaries. We give the background, notation and some results needed for this work, and we describe our main results of this thesis. In Chapter 2 we will introduce a class of weighted Bergman spaces. We then will discuss some properties about the multiplication operator, Mz , on them. We also characterize the dual spaces of these weighted Bergman spaces. In Chapter 3 we will characterize the reducing subspaces of multiple weighted shifts. The reducing subspaces of the Bergman and the Dirichlet shift of multiplicity N are portrayed from this characterization. In Chapter 4 we will introduce the class of super-isometrically dilatable operators and describe their elementary properties. We then will discuss an equivalent description of the invariant subspace lattice for the Bergman shift. We will also discuss the interpolating sequences on the bidisk. Finally, we will examine a special class of super-isometrically dilatable operators. One corollary of this work is that we will prove that the compression of the Bergman shift on two compliments of two invariant subspaces are unitarily equivalent if and only if the two invariant subspaces are equal. / Ph. D.
2

Modélisation macroscopique des écoulements à masse volumique variable : vers un modèle de la pyrolyse de la biomasse / Macroscopic modeling of variable density flows in porous media : a model of pyrolysis of biomass

Bendhaou, Wafa 13 March 2017 (has links)
La pyrolyse est la décomposition thermochimique de la biomasse en gaz de synthèse valorisables en biocarburants. Cette technologie, propre et renouvelable, nécessite aujourd’hui des efforts de recherche et de développement afin de prouver sa compétitivité par rapport aux autres sources d’énergie. L’objectif de cette thèse est de développer un modèle macroscopique de la pyrolyse en utilisant la méthode de prise de moyenne volumique. Le modèle sera ensuite utilisé pour faire des études numériques afin de caractériser le procédé et améliorer les performances des réacteurs. Une approche en deux temps a été établie afin d’atteindre notre objectif. D’abord, des modèles macroscopiques d’écoulements à masse volumique variable en milieu poreux ont été développés. Ce type d’écoulements est similaire à celui mis en jeu en pyrolyse pour deux deux raisons: la masse volumique varie sous l’effet de gradients forts de température et le réacteur de pyrolyse peut être considéré comme un milieu poreux à double porosité (porosité à l’échelle du lit et porosité à l’échelle de la particule). Les résultats théoriques ont montré que les équations de conservation macroscopiques (continuité, quantité de mouvement et énergie) et les propriétés effectives (masse volumique, perméabilité et diffusivité thermique) font apparaitre de nouveaux termes résultants de la variation de densité. La forme explicite de ces termes a été établie et validée par simulations numériques. Les résultats obtenus ont été utilisés dans un deuxième temps afin de développer un modèle macroscopique de la pyrolyse. / Pyrolysis is a thermo-chemical conversion of biomass into bio-fuels. This technology has not been fully developed and its competitiveness against other sources of energy is yet to be proven. The aim of this work is to derive a macroscopic model of pyrolysis by means of volume averaging method. The obtained macroscopic model can then be used to conduct fast and low-cost numerical simulations to characterize the process and improve the reactor efficiency. To achieve our objective, a two-steps methodology has been established. First, the fundamental problem of variable density flow in porous media has been investigated. The physical phenomena in this kind of problem are very similar to those involved in pyrolysis for two reasons: the fluid density varies due to high temperature gradients and the pyrolysis reactor can be considered as a double porosity medium (porosity at the reactor scale and porosity at the biomass particle scale). The obtained macroscopic conservation equations (continuity, momentum and energy) and the effective properties (density, permeability and thermal diffusivity) contain additional terms resulting from the fluid density variation. The explicit form of these terms has been established and their components have been computed. The resulting models of the first step have then been used to develop a macroscopic model of the pyrolysis in the second part of our study.

Page generated in 0.1868 seconds