• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 58
  • 58
  • 22
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Laser diodes incorporating diffractive features /

Meyers, Mark. January 1990 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1990. / Typescript. Includes bibliographical references (leaves 112-119).
32

The investigation of the small signal inductive effect in P-I-N junction diodes using the equivalent circuit technique of Linvill and Gibbons

Krohn, Norman Fred, January 1963 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1963. / Typescript. Vita. Includes computer source code. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 137-138).
33

Thermal management in GaAs/AlGaAs laser diode structures

Modi, Nihar. Triplett, Gregory Edward, January 2007 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb. 16, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis supervisor: Dr. Gregory Triplett. Includes bibliographical references.
34

New approaches for designing high voltage, high current silicon step recovery diodes for pulse sharpening applications.

Chudobiak, Michael John, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 1996. / Includes bibliographical references. Also available in electronic format on the Internet.
35

Design and development of an external cavity diode laser for laser cooling and spectroscopy applications /

Nyamuda, Gibson Peter. January 2006 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
36

Theory of the diode surface-wave storage correlator

El Nokali, Mahmoud Ahmed January 1980 (has links)
No description available.
37

Generation of ultrashort optical pulses with high peak power by monolithic laser diodes

Guo, Xuhan January 2014 (has links)
No description available.
38

Synchronization of coupled semiconductor lasers

Unknown Date (has links)
The synchronization of coupled semiconductor lasers with delay is investigated by numerical simulations of the nonlinear dynamic models complemented by a stability analysis of the linearized system. The equations used in the dissertation are based on the well known "Lang-Kobayashi" model modified to include unidirectional and bidirectional coupling. Stability diagrams are calculated and supplemented by numerically integrated time series. Synchronization is determined and quantified by computing the cross-correlation function. It is found that synchronized states are achievable for a wide range of coupling constants and delay times. These findings have implications for experiment and technological applications, notably in cryptography. / by Michael S. London. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
39

Ultrashort optical pulses from laser diode and erbium doped fibers.

January 1997 (has links)
Tong Yu Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / Abstract --- p.i / Acknowledgments --- p.ii / Table of Contents --- p.iii / Chapter (1) --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Overview of the Thesis --- p.2 / References --- p.4 / Chapter (2) --- Review of Ultrashort Pulse Generation and Pulsewidth Measurement --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Q-switching --- p.5 / Chapter 2.3 --- Gain-switching --- p.8 / Chapter 2.4 --- Mode-locking --- p.11 / Chapter 2.4.1 --- Active mode-locking --- p.12 / Chapter 2.4.2 --- Passive mode-locking --- p.13 / Chapter 2.5 --- Optical Pulse Compression --- p.15 / Chapter 2.6 --- Pulsewidth Detection Methods --- p.18 / Chapter 2.6.1 --- Streak camera --- p.18 / Chapter 2.6.2 --- Photodetector and sampling oscilloscope --- p.20 / Chapter 2.6.3 --- Nonlinear autocorrelator --- p.21 / Chapter 2.6.4 --- Other techniques --- p.24 / References --- p.25 / Chapter (3) --- Erbium Doped Fiber Amplifier and Active Mode-locking --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Erbium Doped Fiber Amplifier --- p.28 / Chapter 3.2.1 --- Background --- p.28 / Chapter 3.2.2 --- Experiment --- p.31 / Chapter 3.3 --- Additive Pulse Mode-locking --- p.35 / Chapter 3.4 --- Active Mode-locking --- p.37 / Chapter 3.4.1 --- Background --- p.37 / Chapter 3.4.2 --- Experiment and result --- p.38 / Chapter 3.4.3 --- Discussion --- p.43 / Chapter 3.5 --- Chapter Summary --- p.46 / References --- p.46 / Chapter (4) --- Passive Mode-locking of Erbium Doped Fiber Laser --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- Background --- p.49 / Chapter 4.3 --- Experimental Setup --- p.51 / Chapter 4.4 --- Initialing Mode-locking --- p.54 / Chapter 4.5 --- Experimental Result --- p.55 / Chapter 4.5.1 --- Real time pulse train --- p.55 / Chapter 4.5.2 --- Autocorrelation trace --- p.57 / Chapter 4.5.3 --- RF spectrum --- p.58 / Chapter 4.5.4 --- Optical spectrum --- p.59 / Chapter 4.5.5 --- Time-bandwidth product --- p.60 / Chapter 4.5.6 --- Output power --- p.61 / Chapter 4.6 --- Discussion --- p.63 / Chapter 4.6.1 --- Linear pulse broadening --- p.63 / Chapter 4.6.2 --- Cavity oscillation --- p.65 / Chapter 4.6.3 --- Pump power hysteresis --- p.66 / Chapter 4.6.4 --- Sideband generation --- p.67 / Chapter 4.6.5 --- Spectral distortion --- p.68 / Chapter 4.7 --- Chapter Summary --- p.71 / References --- p.72 / Chapter (5) --- Application of Ultrashort Optical Pulses from Figure Eight Laser --- p.74 / Chapter 5.1 --- Introduction --- p.74 / Chapter 5.2 --- Dispersion Measurement --- p.74 / Chapter 5.2.1 --- Introduction --- p.74 / Chapter 5.2.2 --- Background --- p.75 / Chapter 5.2.3 --- Experiment and result --- p.76 / Chapter 5.2.4 --- Discussion and conclusion --- p.80 / Chapter 5.3 --- Time Domain Spectral Estimation --- p.82 / Chapter 5.3.1 --- Introduction --- p.82 / Chapter 5.3.2 --- Background --- p.82 / Chapter 5.3.3 --- Experiment and result --- p.83 / Chapter 5.3.4 --- Discussion --- p.88 / Chapter 5.4 --- Ultrashort Pulse Amplification --- p.89 / Chapter 5.4.1 --- Introduction --- p.89 / Chapter 5.4.2 --- Background --- p.89 / Chapter 5.4.3 --- Experiment and result --- p.92 / Chapter 5.4.4 --- Discussion and conclusion --- p.95 / References --- p.96 / Chapter (6) --- Picosecond Pulse Generation from Semiconductor Laser Diodes --- p.99 / Chapter 6.1 --- Introduction --- p.99 / Chapter 6.2 --- Gain-switching --- p.99 / Chapter 6.2.1 --- Experiment using commercial laser diodes --- p.99 / Chapter 6.2.2 --- Repetition rate multiplication --- p.102 / Chapter 6.2.3 --- Pulse compression with HDSF --- p.107 / Chapter 6.2.4 --- Fiber loop compressor --- p.110 / Chapter 6.3 --- Active or Hybrid Mode-locking --- p.112 / Chapter 6.3.1 --- Introduction --- p.112 / Chapter 6.3.2 --- Laser structure --- p.113 / Chapter 6.3.3 --- Experiment and result --- p.113 / Chapter 6.3.4 --- Discussion and conclusion --- p.116 / Chapter 6.4 --- Amplifier Modulation --- p.117 / Chapter 6.4.1 --- Introduction --- p.117 / Chapter 6.4.2 --- Experiment and result --- p.118 / Chapter 6.5 --- Wavelength Tuning --- p.120 / Chapter 6.5.1 --- Introduction --- p.120 / Chapter 6.5.2 --- Experiment and result --- p.121 / Chapter 6.5.3 --- Conclusion --- p.123 / Chapter 6.6 --- Chapter Summary --- p.124 / References --- p.124 / Chapter (7) --- Conclusion --- p.126 / Chapter 7.1 --- Summary of the Research --- p.126 / Chapter 7.1.1 --- Fiber lasers --- p.126 / Chapter 7.1.2 --- Diode lasers --- p.128 / Chapter 7.2 --- Further Study --- p.129 / Appendix I Project Instrumentation --- p.A-l / Appendix II Curve Fitting Program for the SHG Autocorrelation Trace --- p.A-8 / Appendix III Experiment Setup of Figure Eight Laser --- p.A-12 / "Appendix IV Curve Fitting Program for Determination of Second Order Dispersion, dD/dλ" --- p.A-14 / Appendix V 1.3 μm two sections DFB/TA Laser Diode Chips --- p.A-17 / Appendix VI Publication List --- p.A-l9
40

A study of electrical properties of metal/organic semiconductor/metal diodes.

January 2009 (has links)
Wu, Chin Kong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 122-131). / Abstract also in Chinese. / ABSTRACT (English) --- p.i / ABSTRACT (Chinese) --- p.iii / ACKNOWLEDGMENTS --- p.v / TABLE OF CONTENTS --- p.vi / Chapter CHAPTER 1 --- Introduction --- p.1 / Chapter 1.1 --- Organic light-emitting- diode (OLED) --- p.2 / Chapter 1.2 --- Organic photovoltaics --- p.5 / Chapter 1.3 --- Organic field-effect transistor --- p.10 / Chapter CHAPTER 2 --- Properties of organic semiconductor --- p.17 / Chapter 2.1 --- Organic semiconductors --- p.17 / Chapter 2.2 --- Electronic structure of organic semiconductors --- p.18 / Chapter 2.3 --- Disorder and traps in organic semiconductors --- p.19 / Chapter 2.4 --- Charge carriers transport in organic semiconductors --- p.20 / Chapter 2.4.1 --- Polaron model --- p.21 / Chapter 2.4.2 --- Scher-Montroll model --- p.21 / Chapter 2.4.3 --- Gaussian disorder model --- p.23 / Chapter 2.5 --- Metal/organic interfaces --- p.25 / Chapter CHAPTER 3 --- Experimental details --- p.28 / Chapter 3.1 --- Sample preparation --- p.28 / Chapter 3.1.1 --- Organic semiconductors used in this thesis --- p.28 / Chapter 3.1.2 --- Cleaning of substrate --- p.29 / Chapter 3.1.3 --- Deposition of organic layer --- p.29 / Chapter 3.1.4 --- Deposition of metal --- p.31 / Chapter 3.2 --- Electrical characterization methods --- p.32 / Chapter 3.2.1 --- Current density 一 voltage (J-V) measurement --- p.32 / Chapter 3.2.2 --- Dark Injection Space-Charge-Limited (DI-SCL) transient current measurement --- p.38 / Chapter 3.2.3 --- Temperature varied J-V measurement --- p.43 / Chapter 3.2.4 --- Admittance spectroscopy --- p.44 / Chapter CHAPTER 4 --- Charge transport properties in single-organic-layer devices --- p.51 / Chapter 4.1 --- Experimental scheme --- p.51 / Chapter 4.2 --- Experimental results and discussion --- p.53 / Chapter 4.2.1 --- J-V measurements --- p.53 / Chapter 4.2.1.1 --- MTDATA --- p.53 / Chapter 4.2.1.2 --- NPB --- p.59 / Chapter 4.2.2 --- DI-SCL transient current measurement --- p.64 / Chapter 4.2.3 --- Admittance spectroscopy --- p.68 / Chapter 4.2.3.1 --- MTDATA --- p.68 / Chapter 4.2.3.2 --- NPB --- p.75 / Chapter 4.3 --- Conclusion --- p.79 / Chapter CHAPTER 5 --- Charge transport properties in double-organic-layer devices with organic-organic heterojunction --- p.81 / Chapter 5.1 --- Introduction --- p.81 / Chapter 5.2 --- Experimental scheme --- p.82 / Chapter 5.3 --- Experimental results and discussion --- p.84 / Chapter 5.3.1 --- ITO/MTDATA/NPB/A1 device --- p.84 / Chapter 5.3.2 --- ITO/MTDATA/Alq3/LiF/Al device --- p.105 / Chapter 5.4 --- Conclusion --- p.115 / Chapter CHAPTER 6 --- Conclusions and future work --- p.101 / Chapter 6.1 --- Conclusions --- p.118 / Chapter 6.2 --- Future work --- p.120 / REFERENCES --- p.122

Page generated in 0.0484 seconds