Spelling suggestions: "subject:"diophantine equation"" "subject:"diophanitine equation""
1 |
A Diophantine Equation for the Order of Certain Finite Perfect GroupsWeeman, Glenn Steven 17 September 2014 (has links)
No description available.
|
2 |
Families of Thue Inequalities with Transitive AutomorphismsAn, Wenyong January 2014 (has links)
A family of parameterized Thue equations is defined as F_{t,s,...}(X, Y ) = m, m ∈ Z
where F_{t,s,...}(X,Y) is a form in X and Y with degree greater than or equal to 3 and integer coefficients that are parameterized by t, s, . . . ∈ Z. A variety of these families have been studied by different authors.
In this thesis, we study the following families of Thue inequalities
|sx3 −tx2y−(t+3s)xy2 −sy3|≤2t+3s, |sx4 −tx3y−6sx2y2 +txy3 +sy4|≤6t+7s,
|sx6 − 2tx5y − (5t + 15s)x4y2 − 20sx3y3 + 5tx2y4
+(2t + 6s)xy5 + sy6| ≤ 120t + 323s,
where s and t are integers. The forms in question are “simple”, in the sense that the roots of the underlying polynomials can be permuted transitively by automorphisms.
With this nice property and the hypergeometric functions, we construct sequences of good approximations to the roots of the underlying polynomials. We can then prove that under certain conditions on s and t there are upper bounds for the number of integer solutions to the above Thue inequalities.
|
3 |
Robust polynomial controller designWellstead, Kevin January 1991 (has links)
The work presented in this thesis was motivated by the desire to establish an alternative approach to the design of robust polynomial controllers. The procedure of pole-placement forms the basis of the design and for polynomial systems this generally involves the solution of a diophantine equation. This equation has many possible solutions which leads directly to the idea of determining the most appropriate solution for improved performance robustness. A thorough review of many of the aspects of the diophantine equation is presented, which helps to gain an understanding of this extremely important equation. A basic investigation into selecting a more robust solution is carried out but it is shown that, in the polynomial framework, it is difficult to relate decisions in the design procedure to the effect on performance robustness. This leads to the approach of using a state space based design and transforming the resulting output feedback controller to polynomial form. The state space design is centred around parametric output feedback which explicitly represents a set of possible feedback controllers in terms of arbitrary free parameters. The aim is then to select these free parameters such that the closed-loop system has improved performance robustness. Two parametric methods are considered and compared, one being well established and the other a recently proposed scheme. Although the well established method performs slightly better for general systems it is shown to fail when applied to this type of problem. For performance robustness, the shape of the transient response in the presence of model uncertainty is of interest. It is well known that the eigenvalues and eigenvectors play an important role in determining the transient behaviour and as such the sensitivities of these factors to model uncertainty forms the basis on which the free parameters are selected. Numerical optimisation is used to select the free parameters such that the sensitivities are at a minimum. It is shown both in a simple example and in a more realistic application that a significant improvement in the transient behaviour in the presence of model uncertainty can be achieved using the proposed design procedure.
|
4 |
A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER STRUCTURED PEER-TO-PEER NETWORKRahimi, Shahriar 01 December 2017 (has links)
This research focuses on introducing a novel concept to design a scalable, hierarchical interest-based overlay Peer-to-Peer (P2P) system. We have used Linear Diophantine Equation (LDE) as the mathematical base to realize the architecture. Note that all existing structured approaches use Distributed Hash Tables (DHT) and Secure Hash Algorithm (SHA) to realize their architectures. Use of LDE in designing P2P architecture is a completely new idea; it does not exist in the literature to the best of our knowledge. We have shown how the proposed LDE-based architecture outperforms some of the most well established existing architecture. We have proposed multiple effective data query algorithms considering different circumstances, and their time complexities are bounded by (2+ r/2) only; r is the number of distinct resources. Our alternative lookup scheme needs only constant number of overlay hops and constant number of message exchanges that can outperform DHT-based P2P systems. Moreover, in our architecture, peers are able to possess multiple distinct resources. A convincing solution to handle the problem of churn has been offered. We have shown that our presented approach performs lookup queries efficiently and consistently even in presence of churn. In addition, we have shown that our design is resilient to fault tolerance in the event of peers crashing and leaving. Furthermore, we have proposed two algorithms to response to one of the principal requests of P2P applications’ users, which is to preserve the anonymity and security of the resource requester and the responder while providing the same light-weighted data lookup.
|
5 |
Diophantine Equations and Cyclotomic FieldsBartolomé, Boris 26 November 2015 (has links)
No description available.
|
6 |
Řešení diofantických rovnic rozkladem v číselných tělesech / Solving diophantine equations by factorization in number fieldsHrnčiar, Maroš January 2015 (has links)
Title: Solving diophantine equations by factorization in number fields Author: Bc. Maroš Hrnčiar Department: Department of Algebra Supervisor: Mgr. Vítězslav Kala, Ph.D., Mathematical Institute, University of Göttingen Abstract: The question of solvability of diophantine equations is one of the oldest mathematical problems in the history of mankind. While different approaches have been developed for solving certain types of equations, this thesis predo- minantly deals with the method of factorization over algebraic number fields. The idea behind this method is to express the equation in the form L = yn where L equals a product of typically linear factors with coefficients in a particular number field. Provided that several assumptions are met, it follows that each of the factors must be the n-th power of an element of the field. The structure of number fields plays a key role in the application of this method, hence a crucial part of the thesis presents an overview of algebraic number theory. In addition to the general theoretical part, the thesis contains all the necessary computations in specific quadratic and cubic number fields describing their basic characteristics. However, the main objective of this thesis is solving specific examples of equati- ons. For instance, in the case of equation x2 + y2 = z3 we...
|
7 |
Estudo numérico das bifurcações do sistema regulador de Watt / Numerical study of bifurcations in the Watt governor systemVieira, José Carlos Chaves 26 July 2011 (has links)
Made available in DSpace on 2016-12-12T20:15:54Z (GMT). No. of bitstreams: 1
pre_textuais.pdf: 54354 bytes, checksum: 81cdd6a9b6a26b1b93efdeee869b2de9 (MD5)
Previous issue date: 2011-07-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study the self-organization of periodic structures on parameter-spaces of the largest Lyapunov exponent (Lyapunov diagrams) of the Watt governor system model. A hierarchical organization and period-adding bifurcation cascades of the periodic structures are observed, and these self-organized cascades accumulate on a periodic boundary. We also show that the periods of the structures organize themselves obeying the solutions of a diophantine equation. / Neste trabalho estudamos a auto-organização de estruturas periódicas no espaço de parâmetros do maior expoente de Lyapunov (diagramas de Lyapunov) em um modelo do sistema regulador deWatt. Uma organização hierárquica e cascatas de bifurcação por adição de período das estruturas periódicas são observadas e estas cascatas auto-organizadas se acumulam em fronteiras periódicas. Também mostramos que os períodos das estruturas organizam-se obedecendo as soluções de equações diofantina
|
8 |
On A Cubic Sieve Congruence Related To The Discrete Logarithm ProblemVivek, Srinivas V 08 1900 (has links) (PDF)
There has been a rapid increase interest in computational number theory ever since the invention of public-key cryptography. Various attempts to solve the underlying hard problems behind public-key cryptosystems has led to interesting problems in computational number theory. One such problem, called the cubic sieve congruence problem, arises in the context of the cubic sieve method for solving the discrete logarithm problem in prime fields.
The cubic sieve method requires a nontrivial solution to the Cubic Sieve Congruence (CSC)x3 y2z (mod p), where p is a given prime. A nontrivial solution must satisfy
x3 y2z (mod p), x3 ≠ y2z, 1≤ x, y, z < pα ,
where α is a given real number ⅓ < α ≤ ½. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC.
This thesis is concerned with the CSC problem. Recently, the parametrization x y2z (mod p) and y υ3z (mod p) of CSC was introduced. We give a deterministic polynomial-time (O(ln3p) bit-operations) algorithm to determine, for a given υ, a nontrivial solution to CSC, if one exists. Previously it took Õ(pα) time to do this. We relate the CSC problem to the gap problem of fractional part sequences. We also show in the α = ½ case that for a certain class of primes the CSC problem can be solved deterministically Õ(p⅓) time compared to the previous best of Õ(p½). It is empirically observed that about one out of three primes are covered by this class, up to 109
|
9 |
Diophantine equations and cyclotomic fields / Equations diophantiennes et corps cyclotomiquesBartolomé, Boris 26 November 2015 (has links)
Cette thèse examine quelques approches aux équations diophantiennes, en particulier les connexions entre l’analyse diophantienne et la théorie des corps cyclotomiques.Tout d’abord, nous proposons une introduction très sommaire et rapide aux méthodes d’analyse diophantienne que nous avons utilisées dans notre travail de recherche. Nous rappelons la notion de hauteur et présentons le PGCD logarithmique.Ensuite, nous attaquons une conjecture, formulée par Skolem en 1937, sur une équation diophantienne exponentielle. Pour cette conjecture, soit K un corps de nombres, α1 ,…, αm , λ1 ,…, λm des éléments non-nuls de K, et S un ensemble fini de places de K (qui contient toutes les places infinies), de telle sorte que l’anneau de S-entiers OS = OK,S = {α ∈ K : |α|v ≤ 1 pour les places v ∈/ S}contienne α1 , . . . , αm , λ1 , . . . , λm α1-1 , . . . , αm-1. Pour chaque n ∈ Z, soit A(n)=λ_1 α_1^n+⋯+λ_m α_m^n∈O_S. Skolem a suggéré [SK1] :Conjecture (principe local-global exponentiel). Supposons que pour chaque idéal non-nul a de l’anneau O_S, il existe n ∈ Z tel que A(n) ≡0 mod a. Alors, il existe n ∈ Z tel que A(n)=0.Soit Γ le groupe multiplicatif engendré par α1 ,…, αm. Alors Γ est le produit d’un groupe abélien fini et d’un groupe libre de rang fini. Nous démontrons que cette conjecture est vraie lorsque le rang de Γ est un.Après cela, nous généralisons un résultat précédent de Mourad Abouzaid ([A]). Soit F (X,Y) ∈ Q[X,Y] un Q-polynôme irréductible. En 2008, Mourad Abouzaid [A] a démontré le théorème suivant:Théorème (Abouzaid). Supposons que (0,0) soit un point non-singulier de la courbe plane F(X,Y) = 0. Soit m = degX F, n = degY F, M = max{m, n}. Soit ε tel que 0 < ε < 1. Alors, pour toute solution (α, β) ∈ Q ̅2 de F(X,Y) = 0, nous avons soit max{h(α), h(β)} ≤ 56M8ε−2hp(F) + 420M10ε−2 log(4M),soitmax{|h(α) − nlgcd(α, β)|,|h(β) − mlgcd(α, β)|} ≤ εmax{h(α), h(β)}++ 742M7ε−1hp(F) + 5762M9ε−1log(2m + 2n)Cependant, il a imposé la condition que (0,0) soit un point non-singulier de la courbe plane F(X,Y) = 0. En utilisant des versions quelque peu différentes du lemme “absolu” de Siegel et du lemme d’Eisenstein, nous avons pu lever la condition et démontrer le théorème de façon générale. Nous démontrons le théorème suivant:Théorème. Soit F(X,Y) ∈ Q ̅[X,Y] un polynôme absolument irréductible qui satisfasse F(0,0)=0. Soit m=degX F, n=degY F et r = min{i+j:(∂^(i+j) F)/(∂^i X∂^j Y)(0,0)≠0}. Soit ε tel que 0 < ε < 1. Alors, pour tout (α, β) ∈ Q ̅2 tel que F(α,β) = 0, nous avons soith(α) ≤ 200ε−2mn6(hp(F) + 5)soit|(lgcd(α,β))/r-h(α)/n|≤1/r (εh(α)+4000ε^(-1) n^4 (h_p (F)+log(mn)+1)+30n^2 m(h_p (F)+log(mn) ))Ensuite, nous donnons un aperçu des outils que nous avons utilisés dans les corps cyclotomiques. Nous tentons de développer une approche systématique pour un certain genre d’équations diophantiennes. Nous proposons quelques résultats sur les corps cyclotomiques, les anneaux de groupe et les sommes de Jacobi, qui nous seront utiles pour ensuite décrire l’approche.Finalement, nous développons une application de l’approche précédemment expliquée. Nous considèrerons l’équation diophantienne(1) Xn − 1 = BZn,où B ∈ Z est un paramètre. Définissons ϕ∗(B) := ϕ(rad (B)), où rad (B) est le radical de B, et supposons que(2) (n, ϕ∗(B)) = 1.Pour B ∈ N_(>1) fixé, soit N(B) = {n ∈ N_(>1) | ∃ k > 0 tel que n|ϕ∗(B)}. Si p est un premier impair, nous appellerons CF les conditions combinéesI La conjecture de Vandiver est vraie pour p, c’est-à-dire que le nombre de classe h+ du sous-corps réel maximal du corps cyclotomique Q[ζp ], n’est pas divisible par p.II Nous avons ir(p) < √p − 1, en d’autre mots, il y a au plus √p − 1 entiers impairs k < p tels que le nombre de Bernouilli Bk ≡ 0 mod p. [...] / This thesis examines some approaches to address Diophantine equations, specifically we focus on the connection between the Diophantine analysis and the theory of cyclotomic fields.First, we propose a quick introduction to the methods of Diophantine approximation we have used in this research work. We remind the notion of height and introduce the logarithmic gcd.Then, we address a conjecture, made by Thoralf Skolem in 1937, on an exponential Diophantine equation. For this conjecture, let K be a number field, α1 ,…, αm , λ1 ,…, λm non-zero elements in K, and S a finite set of places of K (containing all the infinite places) such that the ring of S-integersOS = OK,S = {α ∈ K : |α|v ≤ 1 pour les places v ∈/ S}contains α1 , . . . , αm , λ1 , . . . , λm α1-1 , . . . , αm-1. For each n ∈ Z, let A(n)=λ_1 α_1^n+⋯+λ_m α_m^n∈O_S. Skolem suggested [SK1] :Conjecture (exponential local-global principle). Assume that for every non zero ideal a of the ring O_S, there exists n ∈ Z such that A(n) ≡0 mod a. Then, there exists n ∈ Z such that A(n)=0.Let Γ be the multiplicative group generated by α1 ,…, αm. Then Γ is the product of a finite abelian group and a free abelian group of finite rank. We prove that the conjecture is true when the rank of Γ is one.After that, we generalize a result previously published by Abouzaid ([A]). Let F(X,Y) ∈ Q[X,Y] be an irreducible Q-polynomial. In 2008, Abouzaid [A] proved the following theorem:Theorem (Abouzaid). Assume that (0,0) is a non-singular point of the plane curve F(X,Y) = 0. Let m = degX F, n = degY F, M = max{m, n}. Let ε satisfy 0 < ε < 1. Then for any solution (α,β) ∈ Q ̅2 of F(X,Y) = 0, we have eithermax{h(α), h(β)} ≤ 56M8ε−2hp(F) + 420M10ε−2 log(4M),ormax{|h(α) − nlgcd(α, β)|,|h(β) − mlgcd(α, β)|} ≤ εmax{h(α), h(β)}++ 742M7ε−1hp(F) + 5762M9ε−1log(2m + 2n)However, he imposed the condition that (0, 0) be a non-singular point of the plane curve F(X,Y) = 0. Using a somewhat different version of Siegel’s “absolute” lemma and of Eisenstein’s lemma, we could remove the condition and prove it in full generality. We prove the following theorem:Theorem. Let F(X,Y) ∈ Q ̅[X,Y] be an absolutely irreducible polynomial satisfying F(0,0)=0. Let m=degX F, n=degY F and r = min{i+j:(∂^(i+j) F)/(∂^i X∂^j Y)(0,0)≠0}. Let ε be such that 0 < ε < 1. Then, for all (α, β) ∈ Q ̅2 such that F(α,β) = 0, we have eitherh(α) ≤ 200ε−2mn6(hp(F) + 5)or|(lgcd(α,β))/r-h(α)/n|≤1/r (εh(α)+4000ε^(-1) n^4 (h_p (F)+log(mn)+1)+30n^2 m(h_p (F)+log(mn) ))Then, we give an overview of the tools we have used in cyclotomic fields. We try there to develop a systematic approach to address a certain type of Diophantine equations. We discuss on cyclotomic extensions and give some basic but useful properties, on group-ring properties and on Jacobi sums.Finally, we show a very interesting application of the approach developed in the previous chapter. There, we consider the Diophantine equation(1) Xn − 1 = BZn,where B ∈ Z is understood as a parameter. Define ϕ∗(B) := ϕ(rad (B)), where rad (B) is the radical of B, and assume that (2) (n, ϕ∗(B)) = 1.For a fixed B ∈ N_(>1)we let N(B) = {n ∈ N_(>1) | ∃ k > 0 such that n|ϕ∗(B)}. If p is an odd prime, we shall denote by CF the combined condition requiring thatI The Vandiver Conjecture holds for p, so the class number h+ of the maximal real subfield of the cyclotomic field Q[ζp ] is not divisible by p.II We have ir>(p) < √p − 1, in other words, there is at most √p − 1 odd integers k < p such that the Bernoulli number Bk ≡ 0 mod p. [...]
|
Page generated in 0.1252 seconds