• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Floristic composition of a tropical rain forest in Indonesian Borneo

SUKARDJO, Sukristijono, HAGIHARA, Akio, 萩原, 秋男, YAMAKURA, Takuo, 山倉, 拓夫, OGAWA, Husato, 小川, 房人 03 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
2

Evaluation of the sustainability of a logging system consisting of selective logging and line planting in Indonesia / インドネシアにおける択伐と列状植栽を組み合わせた施業の持続可能性の評価

Inada, Tomoya 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19037号 / 農博第2115号 / 新制||農||1031(附属図書館) / 学位論文||H27||N4919(農学部図書室) / 31988 / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 神﨑 護, 教授 北島 薫, 教授 北山 兼弘 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
3

Significance of C:N:P stoichiometry for determining tree demography and structure of Bornean lowland forests / ボルネオ低地熱帯林の樹木個体群動態と森林構造の決定要因に関するC:N:P化学量論からの考察

Aoyagi, Ryouta 25 May 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19198号 / 農博第2137号 / 新制||農||1034(附属図書館) / 学位論文||H27||N4944(農学部図書室) / 32190 / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 北山 兼弘, 教授 北島 宣, 教授 神﨑 護 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
4

Resilience of Bornean logged-over lowland tropical rainforests in terms of above-ground biomass recovery / 地上部バイオマス回復からみたボルネオ伐採後低地熱帯降雨林のレジリエンス

Takeshige, Ryuichi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24659号 / 農博第2542号 / 新制||農||1098(附属図書館) / 学位論文||R5||N5440(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 北山 兼弘, 教授 北島 薫, 教授 柴田 昌三 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
5

Floristic composition and host tree utilization of vascular epiphyte assemblages in a Bornean lowland tropical rain forest / ボルネオ島低地熱帯雨林における維管束着生植物群集の組成と宿主木利用様式

Komada, Natsuki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23942号 / 農博第2491号 / 新制||農||1090(附属図書館) / 学位論文||R4||N5377(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 神﨑 護, 教授 北島 薫, 教授 市岡 孝朗 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
6

The effects of tropical forest management on biodiversity and ecosystem functioning

Slade, Eleanor M. January 2007 (has links)
The Effects of Tropical Forest Management on Biodiversity and Ecosystem Functioning Eleanor M. Slade 1. Between 35 % and 50 % of all closed-canopy tropical forest has been lost, and the rate of deforestation continues to increase throughout the tropics. Despite a wealth of literature on the effects of tropical forest disturbance on the diversity and composition of a variety of taxa, there is still no clear consensus on the value of disturbed forests for biodiversity. 2. If forest management practises are to be sustainable in the long-term they should maintain both biodiversity and ecosystem functioning (the interactions and processes of the ecosystem), as well as a timber harvest. However, few studies have investigated the extent to which ecosystem functioning is reduced in logged forests. The effects of different logging intensities on a variety of taxa, and the ecosystem processes with which they are associated, were assessed in the Danum Valley Conservation Area in Sabah (Malaysian Borneo). 3. Even under high logging intensities, the forests of Sabah appear to have been managed in a way that maintains timber yields in the short-term. However, other aspects of forest structure had been affected, which could have important consequences ecologically, and for the long-term sustainability of timber harvests. 4. Combining field studies with manipulative experiments allows assessment of the impacts of species changes associated with habitat modification on measures of ecosystem functioning. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) functional group richness and composition were manipulated in a series of field experiments. Certain functional groups and species were found to have a greater impact on ecosystem functioning than others; nevertheless a full complement of species was needed to maintain full ecosystem functioning. 5. Dung beetles appeared to be relatively robust to changes in forest structure associated with selective logging, but species richness was reduced with high-intensity logging. There was a corresponding decrease in ecosystem functioning (dung and seed removal) with a decrease in species richness, and a decrease in the biomass of large nocturnal tunnellers, suggesting that although some species are dominant, rare species are also needed to preserve full ecosystem functioning. 6. A complex interaction between birds and ants resulted in reduced herbivory of seedlings of the important timber tree, Parashorea malaanonan, in some instances. However, this interaction was not affected by either selective or high intensity logging. Seedfall of P. malaanonan, was reduced in logged forest compared to primary forest. Despite insect seed predation being higher in primary forest, there was still successful recruitment during a non-mast year. Parasitism of insect-predated seeds was found to be inversely density dependent, and was higher in logged forest where seed predation was lower. 7. The results of this thesis suggest that the forests of Sabah appear to be being logged under a management system that is compatible with sustainable timber management, but not necessarily sustainable forest management. Low intensity selective logging seems to preserve much of the original forest structure, biodiversity and ecosystem functioning compared to logging at higher intensities. However, ecosystem processes were variable in their response to logging, suggesting that management decisions should be based on the consideration of multiple taxa and processes.
7

Vers une meilleure estimation des stocks de carbone dans les forêts exploitées à Diptérocarpées de Bornéo / Towards better estimates of carbon stocks in Bornean logged-over Dipterocarp forests

Rozak, Andes 29 November 2018 (has links)
Les forêts tropicales constituent le principal réservoir de biodiversité et de carbone (C). Cependant, la plupart des forêts tropicales, en particulier les forêts de Bornéo en Asie du Sud-Est, subissent une pression intense et sont menacées par des activités anthropiques telles que l'exploitation forestière, l'industrie minière l’agriculture et la conversion en plantations industrielles. En 2010, la superficie des forêts de production de Bornéo était de 26,8 millions d’ha (environ 36% de la superficie totale de l’île, dont 18 millions ha (environ 24%) déjà exploités. Par conséquent, les forêts de production occupent donc une place importante à Bornéo et jouent un rôle essentiel dans la compensation des biens fournis et la maintenance des services écosystémiques, tels que la conservation du C et de la biodiversité.L’exploitation sélective réduit la biomasse aérienne et souterraine par l’élimination de quelques grands arbres, et augmente les stocks de bois mort par des dommages collatéraux. En créant des trouées dans la canopée, le microclimat dans les sous-étages et au sol change localement et accélèrent la décomposition de la litière et de la matière organique. L'importance des dégâts, de l'ouverture de la canopée et de la rapidité du rétablissement du C s'est avéré principalement liée à l'intensité de l'exploitation forestière. Cependant, les évaluations empiriques de l'effet à long terme de l'intensité de l'exploitation forestière sur l'équilibre du C dans les forêts de production restent rares.La présente thèse se concentre principalement sur l'évaluation de l'effet à long terme de l'intensité de l'exploitation forestière sur la séquestration de carbone dans une forêt à Diptérocarpées de Nord Bornéo (District de Malinau, Kalimantan Nord) exploitée en 1999/2000. Cinq principaux réservoirs de C, à savoir le C aérien dans les arbres vivants (AGC), le C souterrain dans les arbres vivants (BGC), le bois mort, la litière et le C organique du sol (SOC) ont été estimés le long d’un gradient d'intensité d'exploitation (0-57% de la biomasse perdue).Nos résultats ont montré que les stocks totaux de C, 16 ans après l'exploitation, variaient de 218 à 554 Mg C ha-1 avec une moyenne de 314 Mg C ha-1. Une différence de 95 Mg C ha-1 a été observée entre une faible intensité d'exploitation forestière (<2,1% de la biomasse initiale perdue) et une intensité d'exploitation élevée (>19%). La plus grande partie du C (environ 77%) était présente dans les arbres vivants, suivie par les stocks du sol (15%), les stocks de bois mort (6%) et une fraction mineure des stocks de litière (1%). L'empreinte de l'intensité de l'exploitation forestière était encore détectable 16 ans après l'exploitation et a été le principal facteur expliquant la réduction des AGC>20, BGC>20, du bois mort et des stocks de C et une augmentation du bois mort. L'intensité de l'exploitation expliquait à elle seule 61%, 63%, 38% et 48% des variations des AGC>20, BGC>20, du bois mort et des stocks de C totaux, respectivement. L'intensité de l'abattage a également réduit considérablement les stocks de SOC dans la couche supérieure de 30 cm. Pour l'ensemble des stocks de SOC (0-100 cm), l'influence de l'intensité de l'exploitation était encore perceptible, en conjonction avec d'autres variables.Nos résultats quantifient l'effet à long terme de l'exploitation forestière sur les stocks de C forestier, en particulier sur les AGC et les bois morts. L'intensité élevée de l'exploitation forestière (réduction de 50% de la biomasse initiale) a réduit les stocks totaux de C de 27%. La récupération de l'AGC était plus faible dans les parcelles d'intensité d'exploitation forestière élevée, ce qui suggère une résilience plus faible de la forêt à l'exploitation forestière. Par conséquent, une intensité d'exploitation forestière inférieure à 20%, devrait être envisagé afin de limiter l'effet à long terme sur les AGC et le bois mort. / Tropical forests are a major reservoir of biodiversity and carbon (C), playing a pivotal role in global ecosystem function and climate regulation. However, most of the tropical forests, especially Bornean forests in Southeast Asia, are under intense pressure and threatened by anthropogenic activities such as logging, mining industry, agriculture and conversion to industrial plantation. In 2010, the area of production forests in Borneo was 26.8 million ha (approx. 36% of the total land area of Borneo) including 18 million ha (approx. 24%) of logged forests. Production forests are thus emerging as a dominant land-use, playing a crucial role in trading-off provision of goods and maintenance of ecosystem services, such as C and biodiversity retention.Selective logging is known to reduce both above- and below-ground biomass through the removal of a few large trees, while increasing deadwood stocks through collateral damages. By creating large gaps in the canopy, microclimates in the understory and on the forest floor change locally speeding up the decomposition of litter and organic matter. The extent of incidental damages, canopy openness, as well as the speed of C recovery, was shown to be primarily related to logging intensity. However, empirical evaluations of the long-term effect of logging intensity on C balance in production forests remain rare.The present thesis aims to assess the long-term effect of logging intensity on C sequestration in a north Bornean Dipterocarp forests (Malinau District, North Kalimantan) logged in 1999/2000. Five main C pools, namely above-ground (AGC) and below-ground (BGC) carbon in living trees, deadwood, litter, and soil organic carbon (SOC) were estimated along a logging intensity gradient (ranging from 0 to 57% of initial biomass removed).Our result showed that total C stocks 16 years after logging, ranged from 218-554 Mg C ha-1 with an average of 314 Mg C ha-1. A difference of 95 Mg C ha-1 was found between low logging intensity (<2.1% of initial biomass lost) and high logging intensity (>19%). Most C (approx. 77%) was found in living trees, followed by soil (15%), deadwood (6%), and a minor fraction in litter (1%). The imprint of logging intensity was still detectable 16 years after logging, and logging intensity thus was the main driver explaining the reduction of AGC>20, BGC>20, deadwood, and total C stocks and an increase in deadwood. Solely, logging intensity explained 61%, 63%, 38%, and 48% of variations of AGC>20, BGC>20, deadwood, and total C stocks, respectively. Logging intensity also significantly reduced SOC stocks in the upper 30 cm layer. For total SOC stocks (0-100 cm), the negative influence of logging intensity was still perceptible, being significant in conjunction with other variables.Our results quantify the long-term effect of logging on forest C stocks, especially on AGC and deadwood. High logging intensity (50% reduction of initial biomass) reduced total C stocks by 27%. AGC recovery was lower in high logging intensity plots, suggesting lowered forest resilience to logging. Our study showed that maintaining logging intensity, below 20% of the initial biomass, limit the long-term effect of logging on AGC and deadwood stocks.

Page generated in 0.0507 seconds