Spelling suggestions: "subject:"direct copolymerization"" "subject:"direct opolymerization""
1 |
Synthesis and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Copolymers Via Direct Copolymerization: Candidates for Proton Exchange Membrane Fuel CellsHarrison, William Lamont 13 December 2002 (has links)
A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells.
Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers.
The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated) regions. Morphology with either co-continuous hydrophobic or hydrophilic domains could be attained for all the sulfonated copolymers. The degree of disulfonation required for continuity of the hydrophilic phase varied with biphenol structure.
Proton conductivity values for the sulfonated copolymers, under fully hydrated conditions, were a function of bisphenol and degree of sulfonation. However, at equivalent ion exchange capacities the proton conductivities were comparable. A careful balance of copolymer composition and acidification method was necessary to afford a morphology that produced ductile films, which were also sufficiently proton conductive. The copolymers of optimum design produced values of 0.1 S/cm or higher, which were comparable to the commercial polyperfluorosulfonic acid material Nafion™ control. / Ph. D.
|
2 |
Direct Polymerization Of Sulfonated Poly(arylene ether) Random Copolymers And Poly(imide)Sulfonated Poly(arylene ether) Segmented Copolymers: New Candidates For Proton Exchange Membrane Fuel Cell Material SystemsMecham, Jeffrey B. 26 April 2001 (has links)
Commercially available 4,4′-dichlorodiphenylsulfone (DCDPS) was successfully disulfonated with fuming sulfuric acid to yield 3,3′-disodiumsulfonyl-4,4′-dichlorodiphenylsulfone (SDCDPS). Subsequently, DCDPS and SDCDPS were systematically reacted with 4,4′-biphenol under nucleophilic step polymerization conditions to generate a series of high molecular weight, film-forming, ductile, ion conducting copolymers. These were converted to the acid form and investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of sulfonation. However, water sorption increased gradually until about 50 mole percent SDCDPS was incorporated, and thereafter showed a large increase to yield water soluble materials for the 100% SDCDPS system. Atomic force microscopy (AFM) confirmed that the morphology of the copolymers displayed continuity of the hydrophilic phase at 60 mole percent SDCDPS. Conductivity measurements in the 40-50 mole percent SDCDPS range, where excellent mechanical strength was maintained, produced values of 0.1 S/cm or higher which were comparable to the control, Nafion™. These compositions also show a high degree of compatibility with heteropolyacids such as phosphotungstic acid. These inorganic compounds provide a promising mechanism for obtaining conductivity at temperatures well above the boiling point of water and membrane compositions containing them are being actively pursued.
The water soluble 100% SDCDPS system was further investigated by successfully functionalizing the endgroups to afford aromatic amines via appropriate endcapping with m-aminophenol. Oligomers and polymers from 5-30 kg/mole number average molecular weight were synthesized and well characterized by NMR spectroscopy, endgroup titrations and size exclusion chromatography. The diamino-telechelic sulfonated segment was reacted with several dianhydrides and diamines to produce multiblock, hydrophobic polyimide-hydrophilic sulfonated polyarylene ether copolymers. Both ester-acid and amic acid synthesis routes were utilized in combination with spin-casting and bulk imidization. A series of tough, film-forming segmented copolymers was prepared and characterized. AFM measurements demonstrated the generation of quite well defined, nanophase-separated morphologies which were dependent upon composition as well as aging in a humid environment. Characterizations of the segmented copolymers for conductivity, and water and methanol sorption were performed and comparisons to state-of-the-art perfluorinated Nafion™ systems were made. It is concluded that the segmented or block systems have the potential to enhance certain desirable PEM characteristics in fuel cells, particularly those related to swelling, retention of mechanical strength at elevated temperatures, and critical adhesion issues in membrane electrode assemblies. / Ph. D.
|
Page generated in 0.1139 seconds